Resonances of metastable molecular systems

Ph. Briet & A. Martinez

Quantum resonances and related topics: Conference in honor of André Martinez 60th birthday

August 6, 2019

向下 イヨト イヨト

Contents

- Metastable states
- Diatomic molecular systems
- Resonances
- Results
- Energy level crossing case
- elements of proof

臣

- ∢ ⊒ ⇒

A Characterization of a state of a given quantum system with initial condition $\psi_0 \in \mathcal{H}$ ($||\psi_0|| = 1$) is given by the so called the survival probability (persistence probability):

 $\mathcal{P}_{\psi_0}(t):=|a_{\psi_0}(t)|^2;\;a_{\psi_0}(t)=ig(\psi(t),\psi_0ig)$

where, $\psi(t) = U(t)\psi_0$ = and U(.) is the propagator associated to the Hamiltonian H of the system.

Here we consider H independent of time so $U(t) = \exp(-itH)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Then ψ_0 is a metastable state if the survival amplitude $a_{\psi_0}(t) \rightarrow 0$ when $t \rightarrow \infty$.

Note that

$$a_{\psi_0}(t) = ig(\exp(-it \mathcal{H})\psi_0, \psi_0 ig) = \int \exp(-it\lambda) d(\mathcal{E}_\lambda \psi_0, \psi_0)$$

If $\psi_0 \in \mathcal{H}_{ac}$ then $a_{\psi_0}(t) \to 0$ as $t \to \infty$ (Riemann-Lebesgue) Fock-Krylov theory *JETP (1947)*

 \rightarrow Main question is the deviation of $a_{\psi_0}(.)$ w.r.t. an exponential law

(日本) (日本) (日本)

Э

L.A. Khalfin JETP (1957) \rightarrow

Suppose that $H \ge E_0 > -\infty$ then

$$|a_{\psi_0}(t)| \geq A \exp(-bt^q), ext{as } t o \infty$$

for any A, b > 0 and 1 > q > 0

In fact by using standard measure theory arguments we can prove that there are no A > 0 and b > 0 s.t. $|a_{\psi_0}(t)| \le A \exp(-bt)$ for any t > 0 see e.g. B.Simon *Int. J of quant. chem. (1978)*

・ 同 ト ・ ヨ ト ・ ヨ ト

The Stark effect, I. Herbst CMP (1980) :

Let $H = H_0 + Fx_1$, $H_0 = -\Delta + V$ on $\mathcal{H} = L^2(\mathbb{R}^3)$, V is translational analytic in the strip $\{|\Im z| \leq \alpha\}$ then for any $\alpha > 0$ and some $\psi_0 \in \mathcal{H}$

$$a_{\psi_0}(t) = \sum_{\Im
ho_j \leq lpha} C_j \exp(-it
ho_j) + r_lpha(t,\psi,F), \ t \geq 0$$

Where $\{\rho_j, j \in \mathbb{N}\}\$ are identified with the stark resonances and $\{C_j, j \in \mathbb{N}\}\$ are computed in terms of projections of resonance eigenfunctions. Moreover

$$|r_{lpha}(t,\psi,F)| = O(\exp(-rac{lpha}{2}t))$$

From now we only consider bounded below Hamiltonian

・ 同 ト ・ ヨ ト ・ ヨ ト

The Strategy from W. Hunziker CMP(1990).

Let $H_{\kappa} = H_0 + \kappa V$ suppose that the dilated family $\{H_{\kappa,\theta}, \theta \in \mathbb{R}\}$ extend to an analytic family of operators in $|\Im \theta| < \beta, \beta > 0$.

If λ_0 an simple eigenvalue of H_0 and $\psi_0, \|\psi_0\| = 1$ the associated eigenvector. Let $g \in C_0^{\infty}(\mathbb{R})$ supported in some interval containing λ_0 and g = 1 near λ_0 . Then denote

$$\mathcal{A}_{\psi_0}(t) := ig(\exp(-itH_\kappa)g(H_\kappa)\psi_0,\psi_0ig)$$

向下 イヨト イヨト

Theorem : Suppose κ small enough, then for any m > 0

$$\mathcal{A}_{\psi_0}(t) = b(\kappa) \exp(-it\lambda_\kappa) + r(t,\psi_0), t \ge 0$$

Here λ_{κ} is the eigenvalue of $H_{\theta}, \Im \theta \neq 0$ near λ_0 and

$$r(t,\psi) = O_m(rac{\kappa^2}{t^m}), \quad b(\kappa) = 1 + O(\kappa^2)$$

向下 イヨト イヨト

Э

Remarks: - If λ_0 is a discret eigenvalue of H_0 then for κ small enough, λ_{κ} is a real discret eigenvalue of H: there is no exponential decay.

-If λ_0 is eigenvalue of H_0 embedded in the continuous spectrum, if since $\Im \lambda_{\kappa} < 0$, $g^{1/2}(H_{\kappa})\psi_0$ is a "metastable state" -Removing the energy cut off we can see readily that

$$a_{\psi_0}(t) = \left(\exp(-itH)\psi_0,\psi_0\right) = b(\kappa)\exp(-it\lambda_\kappa) + O(\kappa^2)$$

-Determination of the critical time t_c : for all $t > t_c$ the rest becomes dominant, here $t_c \ge 2 \frac{|\ln(\kappa)|}{|\Im \lambda_{\kappa}|}$

ヨマ イヨマ イヨマ

Metastable states

L.Cattaneo, G.M., Graff, W. Hunziker A.H.P. (2006) \rightarrow In the same condition as before, let Δ be an interval $\lambda_0 \in \Delta$.

Theorem : Suppose that there exits a conjugate operator A s.t. $e^{isA}D(H) \subset D(H)$ and the following Mourre's estimate holds,

 $P_{\Delta}[H_0,A]P_{\Delta} \geq cP_{\Delta}+K;$

for some c > 0 and a compact operator K. Moreover we suppose that $ad_A^k(H_0)$ are H-bounded for k = 1...n, n > 0. Then

$$\begin{aligned} \mathcal{A}_{\psi_0}(t) &= b(\kappa) \exp(-it\lambda_\kappa) + r(t,\psi_0), t \ge 0\\ r(t,\psi) &= O(\kappa^2 |\ln \kappa| t^{-m}), m+5 \le n, \quad b(\kappa) = 1 + O(\kappa^2)\\ \lambda_\kappa &= \lambda_0 + \kappa (V\psi_0,\psi_0) + \kappa^2 F(\lambda_0 + i0,0) + o(\kappa^2) \end{aligned}$$

向下 イヨト イヨト

Here

$$F(z,\kappa) = (\psi_0, VQ(QHQ-z)^{-1}QV\psi_0)$$

In that case, If $\Im F(\lambda_0 + i0, 0) < 0$ (Fermi-Golden rule), we define λ_{κ} as a resonance for the pair $\{H_0, H_{\kappa}\}$

白 と く ヨ と く ヨ と …

æ

Further references :

- M. Klein, J.Rama, R.Wust : Asymptotics Analysis (2007), (2014)
- E. Skibsted : CMP (1986)
- ▶ V. Dinu, A. Jensen, G. Nenciu Rev. Math Phys (1991)
- B. Simon, I.Sigal, A. Soffer, M.I. Weinstein, G. Hagedorn, A. Joye
- S. Nakamura, P Stephanov, M. Zworski, B. Helffer, J. Sjöstrand....
- K. Urbanowski Eur. Phys. J (2017), K. Raczynska, K. Urbanowski (arXiv-2018), C. Anastopoulos (arXiv-2018) (and references therein).....

(日本) (日本) (日本)

Diatomic molecular systems

In the usual Born Oppenheimer framework, we consider the situation of two electronic levels V_1, V_2 . Denoting by *h* the "small parameter". The hamiltonian is

$$H = H_0 + h \mathcal{W}(x, h D_x)$$
 on $\mathcal{H} = L^2(\mathbb{R}^n) \oplus L^2(\mathbb{R}^n)$

$$H_0 = \left(\begin{array}{cc} P_1 & 0\\ 0 & P_2 \end{array}\right) \tag{1}$$

where $P_j := -h^2 \Delta + V_j(x), \quad j=1,2$ and the level coupling

$$\mathcal{W}(x,hD_x) = \left(\begin{array}{cc} 0 & W \\ W^* & 0 \end{array}\right)$$

 $W = w(x, hD_x)$ first-order semiclassical pseudo-differential operators.

See: M.Klein, A. Martinez, R.Seiler, X.P.Wang, *C.M.P. (1992)*, M.Klein *Anal. of Physics (1987)* A. Martinez, Sordoni. V. J.M.P. (2015)

Diatomic molecular systems

Remarks -Photodissociation involves a Born-Oppenheimer approximation but a time dependent theory. -In this work we study the predissociation phenomena:

Potential curves for V_1 (red) and V_2 (green) states of sulfur monoxide.

h 1 The potentials $V_1, V_2 \in C_b^\infty(\mathbb{R}^n)$ and satisfy

$$U = \{x \in \mathbb{R}^n / V_1 \le 0\} \text{ is bounded}, \liminf_{|x| \to \infty} V_1 > 0;$$

$$V_2 > 0 \text{ on } U \text{ and } \lim_{|x| \to \infty} V_2 = -\Gamma < 0$$

h 2 The potentials V_1 and V_2 extend to bounded holomorphic in $S_{R_0,\delta} = \{z \in \mathbb{C}^n ; |\Re z| \ge R_0, |\Im z| \le \delta |\Re z|\},\$ for some $R_0, \delta > 0$. Moreover in $S_{R_0,\delta}$, V_2 tends to its limit at ∞ and $|\Re V_1| > 0$.

Diatomic molecular systems

A typical situation in one direction:

-

Diatomic molecular systems

W has he following form: $\forall \varphi \in C_0^\infty(\mathbb{R}^n)$

$$(W\varphi)(x) = \frac{1}{(2\pi h)^n} \int e^{i(x-y)\frac{\xi}{h}} w(x,\xi)\varphi(y) dyd\xi$$

where

h 3 The symbol $w(x,\xi)$ extends to a holomorphic functions in,

$$\widetilde{\mathcal{S}}_{\mathcal{R}_0,\delta}:=\mathcal{S}_{\mathcal{R}_0,\delta} imes\{x\in\mathbb{C}^n\,;|\Im x|\leq\delta|\Re x|\},$$

and, for real x, w is a smooth function of x with values in the set of holomorphic functions in ξ near $\{|\Im\xi| \le \delta\}$. Moreover, we assume that, for any $\alpha \in \mathbb{N}^{2n}$, it satisfies

$$\partial^{lpha}w(x,\xi) = \mathcal{O}(|\Re\xi|)$$
 uniformly on $\widetilde{\mathcal{S}}_{\mathcal{R}_0,\delta} \,\cup\, (\mathbb{R}^n imes \{|\Im\xi| \le \delta\})$

see A. Martinez, A. Grigis Anal. PDE (2014)

hNT E=0 is a non trapping energy for V_2 i.e. the following Virial condition is satisfied on $\{V_2 < 0\}$

 $2V_2(x) + x \cdot \nabla V_2 \leq const. < 0$

Remark: We can impose a weaker NT condition by using B.Helffer, J. Sjöstrand *M. S. M. (1986)* and A. Martinez *A.H.P (2002)*,

向下 イヨト イヨト

Introduce the following distortion J. Aguilar, J.M. Combes, *C.M.P* (1971), W.Hunziker A.I.H.P. (1986). Let $f \in C^{\infty}(\mathbb{R}^n)$ such that f(x) = x if |x| is large enough. Let $\theta \in \mathbb{R}$, $|\theta|$ small and for $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$(U_{\theta}\varphi)(x) = det(1+\theta f')^{1/2}\varphi(x+\theta f(x))$$

Denote by $H_{\theta} = U_{\theta}HU_{\theta}^{-1}$, then this family has an extension as an analytic family in the sens of Kato in $\theta \in \mathbb{C}$, $|\theta|$ small A. Martinez, A. Grigis Anal. PDE (2014) In the following we choose $\theta = i\beta, \beta > 0$.

Image: A image: A

We have A. Martinez, A. Grigis Anal. PDE (2014), M.Klein Ann. Phys. (1987)

Theorem (definition of resonances): Under the conditions stated above, then there exits $\varepsilon > 0$ s.t. for h and β small enough H_{θ} has purely discrete spectrum in $\{z \in \mathbb{C}, \Re z \in (-\varepsilon, \varepsilon), \Im z \ge -\beta \varepsilon\}$. The eigenvalues of H_{θ} are the resonances of H

• • = • • = •

Figure: The eigenvalues of H_{θ} coincide with the poles of the meromorphic extension of $z \rightarrow ((H-z)^{-1}\varphi, \varphi)$ for φ in a dense subset of \mathcal{H} see e.g. W.Hunziker A.I.H.P. (1986) or B. Helffer , A. Martinez Helv. Phys. Acta (1987)

We need the following more precise result (in a simplified version): Let $I(h) \subset [-\varepsilon, \varepsilon]$ be an open interval s.t. there exists a(h) > 0and $h^2/a(h) \to 0$ as $h \to 0$ and

$$\sigma(P_1)\cap (I(h)+[-3a(h),3a(h)])\setminus I(h)=\emptyset.$$

Theorem (existence and localisation of resonances) For h small enough $\exists \varepsilon_1 > 0 \text{ s.t. for each eigenvalue}$ $\lambda_0(h), \ldots, \lambda_m(h) \text{ of } P_1 \text{ in } I(h), \text{ there exists a resonance for } H : \rho_0(h), \ldots, \rho_m(h) \in \Omega(h) \text{ with}$

$$\Omega(h) = I(h) + [-a(h), a(h)] + i[0, -\varepsilon_1]$$

s.t. $\rho_j(h) = \lambda_j(h) + O(h^2)$. Moreover $\Im \rho_j(h) = O(e^{-\frac{c_j}{h}})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

A. Martinez, P.B. J.S.T (2017) \rightarrow

- Let u_0, \ldots, u_m orthonormal basis of eigenspace of P_1 corresponding to the eigenvalues of $P_1, \lambda_0, \ldots, \lambda_m$ in I(h);

- Denote:
$$U_j := \begin{pmatrix} u_j \\ 0 \end{pmatrix}$$
, $j = 0, \dots, m;$

-Introduce the energy cut off: $g \in C_0^n(\mathbb{R})$, s.t.

g is supported in I(h) + [-2a, 2a] and g = 1 in I(h) + [-a, a]and for k = 0, ..., n, $g^{(k)} = O(a^{-k})$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

Theorem Let h small enough, for $\varphi = \sum_j \alpha_j U_j$, $\|\varphi\| = 1$, one has

$$\mathcal{A}_{\varphi}(t) = \sum_{j=0}^{m} e^{-it
ho_j} b_j(\varphi, h) + r(t, \varphi, h), \ t \geq 0$$

where ρ_0, \ldots, ρ_m are the resonances of H in $\Omega(h)$ s.t. $\rho_j = \lambda_j + O(h^2)$. The rest satisfies

$$r(t,\varphi,h) = O\left(\frac{h^2}{a(h)} \min_{0 \le k \le n} \{a(h)^{-k}(1+t)^{-k}\}\right)$$

and $b_j(\varphi; h)$ satisfy

$$\sum_{j=0}^{m} b_j(\varphi, h) = 1 + O\left(h^2 + \left(\frac{h^2}{a(h)}\right)^2\right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Э

Corollary: The survival amplitude satisfies,

$$a_{\varphi}(t) = \sum_{j=0}^{m} e^{-it
ho_j} b_j(\varphi,h) + O\left(h^2 + rac{h^2}{a}
ight), t \ge 0$$

then
$$t_c > \frac{|\ln(a/h^2|)}{\eta}$$
 with $\eta = \min\{|\Im \rho_j|\}$ so that $t_c \to \infty$ as $h \to 0$.

The rest goes to 0 when $t \to \infty$?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

크

Results

Remarks:

-If
$$g \in C_0^\infty$$
 then $r(t, \varphi, h) = h^2/a(h)O\left(a(h)t\right)^{-\infty}$)

-Suppose that $\lambda_1, \ldots, \lambda_m$ are discrete simple eigenvalues s.t. $\tilde{a}(h) = \min_{i \neq j} |\lambda_i - \lambda_j|$ satisfies $h^2 / \tilde{a}(h) \to 0$ as $h \to 0$ then

$$b_j(arphi,h) = |(arphi,U_j)|^2 + \mathcal{O}\left((h^2 + h^4(a\widetilde{a})^{-1})
ight)$$

-If *H* has only one resonance in $\Omega(h)$, let $\varphi = U_0$ then $b_0 = 1 + O\left(h^2 + \frac{h^4}{a^2}\right)$ and

$$\mathcal{A}_{arphi}(t) = b_0 e^{-it
ho_0} + h^2/a(h)O\left(a(h)t)^{-\infty}
ight)$$

向下 イヨト イヨト

3

energy level crossing case

S. Fujiié, A. Martinez, T. Watanabe J. Diff. Equat. (2016), J. Diff. Equat. (2017), ArXiv (2019) \rightarrow

• 3 >

Let

$$H = H_0 + h \mathcal{W}(x, h D_x)$$
 on $\mathcal{H} = L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$

with

$$W(x,hD_x)=r_0(x)+ir_1(x)hD_x,$$

where $r_0(x)$ and $r_1(x)$ and V_1 , V_2 have an analytic extension (and bounded) in $S_{0,\delta}$, in the complex domain $S_{0,\delta}$ for some $\delta > 0$.

and

• • = • • = •

Э

Suppose also For $j=1,2,~V_j$ admits limits as $\Re\,x o\pm\infty$ in Γ , and they satisfy,

$$\lim_{\substack{\Re x \to -\infty \\ x \in \Gamma}} V_1(x) > 0; \lim_{\substack{\Re x \to -\infty \\ x \in \Gamma}} V_2(x) > 0;$$
$$\lim_{\substack{\Re x \to +\infty \\ x \in \Gamma}} V_1(x) > 0; \lim_{\substack{\Re x \to +\infty \\ x \in \Gamma}} V_2(x) < 0.$$

There exists a negative number $x^* < 0$ such that,

$$egin{aligned} V_1 > 0, \ V_2 > 0 \ on \ (-\infty, x^*); \ V_1 < 0 < V_2 \ on \ (x^*, 0); \ V_2 < 0 < V_1 \ on \ (0, +\infty), \end{aligned}$$

 $\exists x * > 0 \text{ s.t. } V'_1(x *) := -1, V'_1(0) := 1 \text{ and } V'_2(0) := -1.$

• (1) • (

Theorem: For h small enough, the resonances of H in

$$\Omega(h) = [-C_0 h^{2/3}, C_0 h^{2/3}] - i[0, C_0 h], \ C_0 > 0$$

are of the form :

$$\rho_k(h) = \lambda_k(h) + 0(h^{\frac{4}{3}}) \quad ; \quad \Im \, \rho_k(h) = O(h^{\frac{5}{3}})$$

where $\lambda_k(h) \in \mathbb{R}$ corresponds to an eigenvalue $e_k(h)$ of P_1 s.t. $\lambda_k(h) = e_k(h) - O(h^2)$,

Remark: This covers the case of avoiding-crossing with gap having a length of $O(h^{\alpha}), \alpha \ge 1 \rightarrow$ to a slight modification of the coefficient r_0 introducing a perturbation of the same order.

A. Martinez, P.B. arXiv:1812.08724 math-ph (2018) and JDE (2019) \rightarrow

Let *h* small enough, fix an resonance $\rho_0(h)$ of *H* corresponding to an eigenvalue $e_0(h)$ of $P_1 \in [-C_0 h^{2/3}, C_0 h^{2/3}]$ s.t.

$$\rho_0(h) = e_0(h) + O(h^{\frac{4}{3}})$$

Denote by u_0 the normalized eigenfunction of P_1 associated with e_0 and $\varphi = (u_0, 0)$.

We choose an energy cut off $g \in C_0^\infty(\mathbb{R})$

向下 イヨト イヨト

Theorem : For *h* small enough then

$$\mathcal{A}_{\varphi}(t)=b(h)e^{-it
ho_0}+h^{rac{2}{3}}q_0(t,h)+\mathcal{O}(h(ht)^{-\infty}),\ t\geq 0$$

uniformly for h > 0 small enough and $t \in \mathbb{R}$, with,

$$b(h) = 1 + \mathcal{O}(h^{1/3});$$

$$q_0(t,h) = 4r_0(0)^2 c_0^2 e^{-ite_0} \left[A_0(e_0 h^{-\frac{2}{3}}) \right]^2 F(ht),$$

where F is an analytic function s.t. $F(\lambda) = O(|\lambda|^{-\infty})$ and A_0 is the function,

$$A_0(s) := 2^{-\frac{1}{3}} Ai\left(-2^{\frac{2}{3}}s\right).$$

向下 イヨト イヨト

Э

From Stone's formula,

$$\mathcal{A}_{\varphi}(t) = \lim_{\varepsilon \to 0_+} \frac{1}{2i\pi} \int_{\mathbb{R}} e^{-it\lambda} g(\lambda) ((R(\lambda + i\varepsilon) - R(\lambda - i\varepsilon))\varphi, \varphi) d\lambda =$$

$$=\frac{1}{2i\pi}\int_{\gamma}e^{-itz}(R_{\theta}(z)\varphi_{\theta},\varphi_{-\theta})dz+\frac{1}{2i\pi}\int_{\gamma_{-}}e^{-itz}g(\Re z)T_{\theta}(z)dz,$$

where γ is a certain contour around I(h), $\gamma_{-} \subset \{Imz \leq 0\}$ and

$$T_{ heta}(z) := (R_{ heta}(z)\varphi_{ heta}, \varphi_{- heta}) - (R_{- heta}(z)\varphi_{- heta}, \varphi_{ heta})$$

向下 イヨト イヨト

臣

By the Cauchy formula,

$$\mathcal{A}_{\varphi}(t) = \sum_{j=1}^{m} e^{-it
ho_j} b_j(\varphi, h) + r(t, \varphi, h),$$

where b_j is the residue of $z o (R_{ heta}(z) arphi_{ heta}, arphi_{- heta})$ at $z =
ho_j$ and

$$r(t, \varphi, h) := rac{1}{2i\pi} \int_{\gamma_-} e^{-itz} g(\Re z) T_{ heta}(z) dz.$$

臣

Strategy of proof

Estimates on the coefficients b_j : By using a reduction process (Feshbach method) we get that

$$b_j = \mathsf{Residue}_{z=
ho_j}(E_+(z)(E_{-+}(z))^{-1}E_-(z)arphi_ heta,arphi_{- heta})$$

where $E_+(z), E_-(z)$ are analytic operators in $\Omega(h)$ and

$$E_{-+}(z) = z\mathbb{I}_m - \Lambda + h^2F(z)$$

with $\Lambda = diag(\lambda_0, ..., \lambda_m)$ and F(z) is the meromorphic extension in $\Omega(h)$ of $(m+1) \times (m+1)$ matrix:

$$F_{k,l}(z) = (\mathcal{W}Q(QHQ-z)^{-1}Q\mathcal{W}\phi_k,\phi_l)$$

This gives $\sum_{j=0}^{m} b_j = \frac{1}{2i\pi} \int_{\gamma} (E_{-+}(z))^{-1} \alpha_{\varphi}, \alpha_{\varphi}), \ \alpha_{\varphi} = (\alpha_0, ..., \alpha_m)$ The result follows by using accurate semiclassical estimates.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Estimate on the rest term follows from usual estimates on the dilated resolvent + Agmon estimate + integration by parts

→ < E → < E →</p>

Thanks for your attention

A B K A B K

臣