Obstacles for Magnetic Hamiltonians: SSF near Landau levels

V. Bruneau, with G. Raikov

IHP, Quantum Resonances and Related Topics, June 2019 In honor of André Martinez

June 12, 2019

Schrödinger operators with constant magnetic field $B=(0,0, b)$:

$$
\begin{gathered}
H_{0}:=-\left(\nabla^{A}\right)^{2}=\left(D_{1}+\frac{b}{2} x_{2}\right)^{2}+\left(D_{2}-\frac{b}{2} x_{1}\right)^{2}+D_{3}^{2} \\
D_{j}:=-i \frac{\partial}{\partial x_{j}}, \quad \nabla_{j}^{A}:=\nabla_{x_{j}}-i A_{j}, \quad A=\left(\frac{b}{2} x_{2},-\frac{b}{2} x_{1}, 0\right)
\end{gathered}
$$

H_{0} is s.a. on the Magnetic Sobolev spaces $\mathfrak{D}\left(H_{0}\right):=H_{A}^{2}\left(\mathbb{R}^{3}\right)$

$$
\|u\|_{\mathrm{H}_{A}^{s}(\Omega)}^{2}:=\sum_{\alpha \in \mathbb{Z}_{+}^{3}: 0 \leq|\alpha| \leq s} \int_{\Omega}\left|\left(\nabla^{A}\right)^{\alpha} u\right|^{2} d x .
$$

Neumann realization on $\Omega_{j}: H_{-, j}, j=$ ex, in, restriction of H_{0} on

Schrödinger operators with constant magnetic field $B=(0,0, b)$:

$$
\begin{aligned}
H_{0} & :=-\left(\nabla^{A}\right)^{2}=\left(D_{1}+\frac{b}{2} x_{2}\right)^{2}+\left(D_{2}-\frac{b}{2} x_{1}\right)^{2}+D_{3}^{2} \\
D_{j} & :=-i \frac{\partial}{\partial x_{j}}, \quad \nabla_{j}^{A}:=\nabla_{x_{j}}-i A_{j}, \quad A=\left(\frac{b}{2} x_{2},-\frac{b}{2} x_{1}, 0\right)
\end{aligned}
$$

H_{0} is s.a. on the Magnetic Sobolev spaces $\mathfrak{D}\left(H_{0}\right):=\mathrm{H}_{A}^{2}\left(\mathbb{R}^{3}\right)$

$$
\|u\|_{\mathrm{H}_{A}^{s}(\Omega)}^{2}:=\sum_{\alpha \in \mathbb{Z}_{+}^{3}: 0 \leq|\alpha| \leq s} \int_{\Omega}\left|\left(\nabla^{A}\right)^{\alpha} u\right|^{2} d x .
$$

$\Omega_{\text {in }} \subset \mathbb{R}^{3}:$ a connected regular bounded domain. $\Omega_{\text {ex }}:=\mathbb{R}^{3} \backslash \Omega_{\mathrm{in}}$,
$\Gamma:=\partial \Omega_{\mathrm{in}}=\partial \Omega_{\mathrm{ex}}, \nu:$ outward normal vector at Γ (w.r.t. Ω_{in})
Dirichlet realization on $\Omega_{j}: H_{+, j}, j=\mathrm{ex}$, in, restriction of H_{0} on

$$
\mathfrak{D}\left(H_{+, j}\right):=\left\{u \in \mathrm{H}_{A}^{2}\left(\Omega_{j}\right) \mid u_{\mid \Gamma}=0\right\} .
$$

Neumann realization on $\Omega_{j}: H_{-, j}, j=e x$, in, restriction of H_{0} on

$$
\mathfrak{D}\left(H_{-, j}\right):=\left\{u \in \mathrm{H}_{A}^{2}\left(\Omega_{j}\right) \mid \nu \cdot \nabla^{A} u_{\mid \Gamma}=0\right\} .
$$

Free Magnetic Schrödinger operators in \mathbb{R}^{3} :

$$
H_{0}:=-\left(\nabla^{A}\right)^{2}=\left(D_{1}+\frac{b}{2} x_{2}\right)^{2}+\left(D_{2}-\frac{b}{2} x_{1}\right)^{2}+D_{3}^{2}
$$

We consider geometric perturb.: in $L^{2}\left(\mathbb{R}^{3}\right)=L^{2}\left(\Omega_{\text {in }}\right) \oplus L^{2}\left(\Omega_{\mathrm{ex}}\right)$,

$$
H_{ \pm}:=H_{ \pm, \mathrm{in}} \oplus H_{ \pm, \mathrm{ex}} .
$$

Boundary condition on Γ : " + ": Dirichlet " -": Neumann We have:

Free Magnetic Schrödinger operators in \mathbb{R}^{3} :

$$
H_{0}:=-\left(\nabla^{A}\right)^{2}=\left(D_{1}+\frac{b}{2} x_{2}\right)^{2}+\left(D_{2}-\frac{b}{2} x_{1}\right)^{2}+D_{3}^{2}
$$

We consider geometric perturb.: in $L^{2}\left(\mathbb{R}^{3}\right)=L^{2}\left(\Omega_{\text {in }}\right) \oplus L^{2}\left(\Omega_{\mathrm{ex}}\right)$,

$$
H_{ \pm}:=H_{ \pm, \mathrm{in}} \oplus H_{ \pm, \mathrm{ex}} .
$$

Boundary condition on Γ : " + ": Dirichlet " \quad ": Neumann We have:

$$
\begin{aligned}
& H_{-} \leq H_{0} \leq H_{+} \\
& \sigma\left(H_{ \pm, \text {in }}\right)=\sigma_{\text {disc }}\left(H_{ \pm, \text {in }}\right) \subset(0,+\infty) \\
& \sigma_{\text {ess }}\left(H_{ \pm, \text {ex }}\right)=\sigma_{\text {ess }}\left(H_{0}\right)=\sigma\left(H_{0}\right)=[b,+\infty)
\end{aligned}
$$

Recall: spectrum of H_{0} :

- The Landau Hamiltonian, on $L^{2}\left(\mathbb{R}^{2}\right)$:

$$
\begin{gathered}
H_{0, \perp}=\left(i \frac{\partial}{\partial x_{1}}-\frac{b x_{2}}{2}\right)^{2}+\left(i \frac{\partial}{\partial x_{2}}+\frac{b x_{1}}{2}\right)^{2} \approx\left(D_{y_{1}}^{2}+y_{1}^{2}\right) \otimes I_{y_{2}} \\
\text { Spectrum: } \\
\mathrm{b} \\
\hline
\end{gathered}
$$

- The 3D Magnetic Schrödinger operator, on $L^{2}\left(\mathbb{R}^{3}\right)$:

Spectrum:

$$
H_{0}=H_{0, \perp}-\frac{\partial^{2}}{\partial x_{3}^{2}}
$$

Recall: spectrum of H_{0} :

- The Landau Hamiltonian, on $L^{2}\left(\mathbb{R}^{2}\right)$:

$$
\begin{aligned}
& H_{0, \perp}=\left(i \frac{\partial}{\partial x_{1}}-\frac{b x_{2}}{2}\right)^{2}+\left(i \frac{\partial}{\partial x_{2}}+\frac{b x_{1}}{2}\right)^{2} \approx\left(D_{y_{1}}^{2}+y_{1}^{2}\right) \otimes I_{y_{2}} \\
& \text { trum: } \\
& \text { b } \\
& \sigma\left(H_{0, \perp}\right)=\sigma_{\mathrm{ess}}\left(H_{0, \perp}\right)=\left\{\Lambda_{j}=b(2 j+1) ; j \in \mathbb{N}\right\}, \\
& \Lambda_{j}=b(2 j+1): \text { Landau Level, mult. }\left(\Lambda_{j}\right)=\infty
\end{aligned}
$$

- The 3D Magnetic Schrödinger operator, on $L^{2}\left(\mathbb{R}^{3}\right)$:

$$
H_{0}=H_{0, \perp}-\frac{\partial^{2}}{\partial x_{3}^{2}}
$$

Spectrum:

Goal: measure of the influence of the obstacle on the spectrum near Landau levels

The Spectral Shift Function (SSF) for the pair $\left(H_{ \pm}, H_{0}\right)$: In the sense of the distributions

$$
\xi\left(E ; H_{ \pm}, H_{0}\right):=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)
$$

For a.e. $E \in[b, \infty)=\sigma_{\mathrm{ac}}\left(H_{0}\right)$, the Birman-Krein formula implies $\operatorname{det} S\left(E ; H_{ \pm}, H_{0}\right)=e^{-2 \pi i \xi\left(E ; H_{ \pm}, H_{0}\right)}$
where $S\left(E ; H_{ \pm}, H_{0}\right)$ is the scattering matrix

Proposition

The SSF coincide a.e. with $\tilde{\xi}\left(; H_{ \pm}, H_{0}\right)$ which is

- bounded on every compact subset of $(0, \infty) \backslash b\left(2 \mathbb{Z}_{+}+1\right)$
- continuous on $(0, \infty) \backslash\left(\sigma_{p}\left(H_{ \pm}\right) \cup b\left(2 \mathbb{Z}_{+}+1\right)\right)$

Question 1 Behavior of $\xi\left(E ; H_{ \pm}, H_{0}\right)$ as $E \rightarrow \Lambda_{q}=b(2 q+1)$?
Question 2 How does this behavior depend on themobștaçle?

The Spectral Shift Function (SSF) for the pair $\left(H_{ \pm}, H_{0}\right)$: In the sense of the distributions

$$
\xi\left(E ; H_{ \pm}, H_{0}\right):=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)
$$

For a.e. $E \in[b, \infty)=\sigma_{\mathrm{ac}}\left(H_{0}\right)$, the Birman-Krein formula implies

$$
\operatorname{det} S\left(E ; H_{ \pm}, H_{0}\right)=e^{-2 \pi i \xi\left(E ; H_{ \pm}, H_{0}\right)}
$$

where $S\left(E ; H_{ \pm}, H_{0}\right)$ is the scattering matrix

Proposition

The SSF coincide a.e. with $\tilde{\xi}\left(\cdot ; H_{ \pm}, H_{0}\right)$ which is :

- bounded on every compact subset of $(0, \infty) \backslash b\left(2 \mathbb{Z}_{+}+1\right)$
- continuous on $(0, \infty) \backslash\left(\sigma_{p}\left(H_{ \pm}\right) \cup b\left(2 \mathbb{Z}_{+}+1\right)\right)$

Question 1 Behavior of $\xi\left(E ; H_{ \pm}, H_{0}\right)$ as $E \rightarrow \Lambda_{q}=b(2 q+1)$?
Question 2 How does this behavior depend on thempsstacter ?

The Spectral Shift Function (SSF) for the pair $\left(H_{ \pm}, H_{0}\right)$: In the sense of the distributions

$$
\xi\left(E ; H_{ \pm}, H_{0}\right):=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)
$$

For a.e. $E \in[b, \infty)=\sigma_{\mathrm{ac}}\left(H_{0}\right)$, the Birman-Krein formula implies

$$
\operatorname{det} S\left(E ; H_{ \pm}, H_{0}\right)=e^{-2 \pi i \xi\left(E ; H_{ \pm}, H_{0}\right)}
$$

where $S\left(E ; H_{ \pm}, H_{0}\right)$ is the scattering matrix

Proposition

The SSF coincide a.e. with $\tilde{\xi}\left(\cdot ; H_{ \pm}, H_{0}\right)$ which is :

- bounded on every compact subset of $(0, \infty) \backslash b\left(2 \mathbb{Z}_{+}+1\right)$
- continuous on $(0, \infty) \backslash\left(\sigma_{p}\left(H_{ \pm}\right) \cup b\left(2 \mathbb{Z}_{+}+1\right)\right)$

Question 1 Behavior of $\xi\left(E ; H_{ \pm}, H_{0}\right)$ as $E \rightarrow \Lambda_{q}=b(2 q+1)$? Question 2 How does this behavior depend on the obstacle?

II) Singularities of the SSF near Λ_{q} :

Remark: $\xi\left(E ; H_{ \pm}, H_{0}\right):=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)$

$$
=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{in}}\right) \oplus \mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{ex}}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)
$$

$=-\operatorname{Tr}\left(0 \oplus \mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{ex}}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{in}}\right)\right)$
Since the spectrum of $H_{ \pm, \text {in }}$ is discret, near each Λ_{q}

$$
\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \text {in }}\right)\right)=O(1)
$$

Then as $E \rightarrow \Lambda_{q}$

$$
\xi\left(E_{;} H_{ \pm}, H_{0}\right)=\xi\left(E_{;} H_{ \pm, \text {ex }}, H_{0}\right)+O(1)
$$

II) Singularities of the SSF near Λ_{q} :

Remark: $\xi\left(E ; H_{ \pm}, H_{0}\right):=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)$

$$
=-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{in}}\right) \oplus \mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{ex}}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)
$$

$=-\operatorname{Tr}\left(0 \oplus \mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{ex}}\right)-\mathbb{1}_{(-\infty, E)}\left(H_{0}\right)\right)-\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \mathrm{in}}\right)\right)$
Since the spectrum of $H_{ \pm, \text {in }}$ is discret, near each Λ_{q}

$$
\operatorname{Tr}\left(\mathbb{1}_{(-\infty, E)}\left(H_{ \pm, \text {in }}\right)\right)=O(1)
$$

Then as $E \rightarrow \Lambda_{q}$

$$
\xi\left(E ; H_{ \pm}, H_{0}\right)=\xi\left(E ; H_{ \pm, \mathrm{ex}}, H_{0}\right)+O(1)
$$

\Longrightarrow No influence of the interior problem

For $\lambda \in\left(0, e^{-1}\right)$ set $\quad \ln _{2}(\lambda):=\ln |\ln \lambda|, \quad \Phi_{0}(\lambda):=\frac{|\ln \lambda|}{\ln (\lambda)}$

Theorem 1

Let $q \in \mathbb{Z}_{+}$. Then we have

$$
\begin{gathered}
\xi\left(\Lambda_{q}-\lambda ; H_{+}, H_{0}\right)=O(1) \\
\xi\left(\Lambda_{q}-\lambda ; H_{-}, H_{0}\right)=-\frac{1}{2} \Phi_{0}(\lambda)(1+o(1)), \\
\xi\left(\Lambda_{q}+\lambda ; H_{ \pm}, H_{0}\right)= \pm \frac{1}{4} \Phi_{0}(\lambda)(1+o(1)),
\end{gathered}
$$

as $\lambda \downarrow 0$.
Remark: The main contribution, $\Phi_{0}(\lambda)$, is independent of Ω_{in}.

Previous results: 2D case Perturbations of the Landau Ham., $H_{0, \perp}=\left(D_{1}-\frac{b x_{2}}{2}\right)^{2}+\left(D_{2}+\frac{b x_{1}}{2}\right)^{2}, H_{\perp}=H_{0, \perp}+V$ or $H_{\perp, \pm}$ infinitely many eig. above each Landau level infinitely many eig. below each Landau level
 On $\mathbb{R}^{2} \backslash \mathcal{O}_{\text {in }}$ or for $V= \pm \mathbf{1}_{\mathcal{O}_{\text {in }}}, \mathcal{O}_{\text {in }} \subset \mathbb{R}^{2}$ bounded. Near Λ_{q} : $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\right.$ eig. $\left.\left(H_{\perp}\right) \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$,

Theorem (RaWa02, PuRo07, Pe07, GokaPe14)
$\mathcal{N}_{ \pm}(\lambda) \sim \Phi_{0}(\lambda):=|\ln \lambda|(\ln |\ln \lambda|)^{-1}, \quad$ as $\lambda \searrow 0$
For non compactly supp. perturb.: Sobolev '84, Tamura '88, Raikov '90, Ivrii '98, Raik.-Warzel '02, Melgard-Rozenblum '03

Previous results: 2D case Perturbations of the Landau Ham., $H_{0, \perp}=\left(D_{1}-\frac{b x_{2}}{2}\right)^{2}+\left(D_{2}+\frac{b x_{1}}{2}\right)^{2}, H_{\perp}=H_{0, \perp}+V$ or $H_{\perp, \pm}$ If $V>0$ or $H_{\perp,+}$: infinitely many eig. above each Landau level If $V<0$ or $H_{\perp,-}$: infinitely many eig. below each Landau level

\square
\square
For non compactly supp. perturb.: Sobolev '84, Tamura '88, Raikov '90, Ivrii '98, Raik.-Warzel '02, Melgard-Rozenblum '03

Previous results: 2D case Perturbations of the Landau Ham., $H_{0, \perp}=\left(D_{1}-\frac{b x_{2}}{2}\right)^{2}+\left(D_{2}+\frac{b x_{1}}{2}\right)^{2}, H_{\perp}=H_{0, \perp}+V$ or $H_{\perp, \pm}$ If $V>0$ or $H_{\perp,+}$: infinitely many eig. above each Landau level If $V<0$ or $H_{\perp,-}$: infinitely many eig. below each Landau level

On $\mathbb{R}^{2} \backslash \mathcal{O}_{\text {in }}$ or for $V= \pm \mathbf{1}_{\mathcal{O}_{\text {in }}}, \mathcal{O}_{\text {in }} \subset \mathbb{R}^{2}$ bounded. Near Λ_{q} : $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\right.$ eig. $\left.\left(H_{\perp}\right) \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$,

Theorem (RaWa02, PuRo07, Pe07, GoKaPe14)

$\mathcal{N}_{ \pm}(\lambda) \sim \Phi_{0}(\lambda):=|\ln \lambda|(\ln |\ln \lambda|)^{-1}, \quad$ as $\lambda \searrow 0$
For non compactly supp. perturb.: Sobolev '84, Tamura '88,
Raikov '90, Ivrii '98, Raik.-Warzel '02, Melgard-Rozenblum '03

Previous results: 2D case Perturbations of the Landau Ham., $H_{0, \perp}=\left(D_{1}-\frac{b x_{2}}{2}\right)^{2}+\left(D_{2}+\frac{b x_{1}}{2}\right)^{2}, H_{\perp}=H_{0, \perp}+V$ or $H_{\perp, \pm}$ If $V>0$ or $H_{\perp,+}$: infinitely many eig. above each Landau level If $V<0$ or $H_{\perp,-}$: infinitely many eig. below each Landau level

On $\mathbb{R}^{2} \backslash \mathcal{O}_{\text {in }}$ or for $V= \pm \mathbf{1}_{\mathcal{O}_{\text {in }}}, \mathcal{O}_{\text {in }} \subset \mathbb{R}^{2}$ bounded. Near Λ_{q} : $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\right.$ eig. $\left.\left(H_{\perp}\right) \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$,

Theorem (RaWa02, PuRo07, Pe07, GoKaPe14)

$\mathcal{N}_{ \pm}(\lambda) \sim \Phi_{0}(\lambda):=|\ln \lambda|(\ln |\ln \lambda|)^{-1}, \quad$ as $\lambda \searrow 0$
For non compactly supp. perturb.: Sobolev '84, Tamura '88, Raikov '90, Ivrii '98, Raik.-Warzel '02, Melgard-Rozenblum '03

Known results: 3D case
H : Perturbation of H_{0} by

- potentials $(V \rightarrow 0$ at $\infty)$: Av-He-Si '78, Fe-Ra'04, Bo-B.-Ra '07, '10
- by obstacles: B-Sa'16

The perturbation may generate :

- Accumulation of discrete eigenvalues to the first Landau Level
- Singularities of the Spectral Shift Function (Scattering Phase) at the Landau Levels: $\operatorname{SSF}\left(\Lambda_{q} \pm \lambda\right) \rightarrow \infty$ as $\lambda \searrow 0$.
- Accumulation of resonances or embbeded eigenvalues to Λ_{q}

$H_{V}=H_{0}+V, \quad V \longrightarrow 0$ at ∞ 1) EIGENVALUES:

For $V \leq 0, V\left(X_{\perp}, x_{3}\right)=V\left(\left|X_{\perp}\right|, x_{3}\right), X_{\perp}=\left(x_{1}, x_{2}\right)$ [Avron-Herbst-Simon '78]

$$
-2 b<V\left(X_{\perp}, x_{3}\right) \leq-C 1_{K}\left(X_{\perp}\right) v\left(x_{3}\right), K \subset \mathbb{R}^{2}, C>0
$$

* If $v\left(x_{3}\right)=\mathbf{1}_{\tilde{K}}\left(x_{3}\right)$: at least one eig. in $\left(\Lambda_{q-1}, \Lambda_{q}\right), q \in \mathbb{N}$
* If $v\left(x_{3}\right)=\left\langle x_{3}\right\rangle^{-\alpha}, \alpha \in(0,2): \exists\left(\lambda_{q, j}\right)_{q, j}$ eig. of $H_{V}, \lambda_{q, j} \rightarrow \Lambda_{q}$

For $0 \leq V \leq C<X_{\perp}>^{-m_{\perp}}<x_{3}>^{-m_{3}}, m_{\perp}>0, m_{3}>2$ only a
discret set of embbeded eig. [Bony-B.-Raikov '07, '10]

$$
\begin{aligned}
H_{V} & =H_{0}+V, \quad V \longrightarrow 0 \text { at } \infty \\
& \text { 1) EIGENVALUES: }
\end{aligned}
$$

For $V \leq 0, V\left(X_{\perp}, x_{3}\right)=V\left(\left|X_{\perp}\right|, x_{3}\right), X_{\perp}=\left(x_{1}, x_{2}\right)$
[Avron-Herbst-Simon '78]

$$
-2 b<V\left(X_{\perp}, x_{3}\right) \leq-C 1_{K}\left(X_{\perp}\right) v\left(x_{3}\right), K \subset \mathbb{R}^{2}, C>0
$$

* If $v\left(x_{3}\right)=\mathbf{1}_{\tilde{K}}\left(x_{3}\right)$: at least one eig. in $\left(\Lambda_{q-1}, \Lambda_{q}\right), q \in \mathbb{N}$ * If $v\left(x_{3}\right)=\left\langle x_{3}\right\rangle^{-\alpha}, \alpha \in(0,2): \exists\left(\lambda_{q, j}\right)_{q, j}$ eig. of $H_{V}, \lambda_{q, j} \rightarrow \Lambda_{q}$

For $0 \leq V \leq C<X_{\perp}>^{-m_{\perp}}<x_{3}>^{-m_{3}}, m_{\perp}>0, m_{3}>$
discret set of embbeded eig. [Bony-B.-Raikov '07, '10]

$$
\begin{aligned}
H_{V} & =H_{0}+V, \quad V \longrightarrow 0 \text { at } \infty \\
& \text { 1) EIGENVALUES: }
\end{aligned}
$$

For $V \leq 0, V\left(X_{\perp}, x_{3}\right)=V\left(\left|X_{\perp}\right|, x_{3}\right), X_{\perp}=\left(x_{1}, x_{2}\right)$
[Avron-Herbst-Simon '78]

$$
-2 b<V\left(X_{\perp}, x_{3}\right) \leq-C 1_{K}\left(X_{\perp}\right) v\left(x_{3}\right), K \subset \mathbb{R}^{2}, C>0
$$

* If $v\left(x_{3}\right)=1_{\tilde{K}}\left(x_{3}\right)$: at least one eig. in $\left(\Lambda_{q-1}, \Lambda_{q}\right), q \in \mathbb{N}$ * If $v\left(x_{3}\right)=\left\langle x_{3}\right\rangle^{-\alpha}, \alpha \in(0,2): \exists\left(\lambda_{q, j}\right)_{q, j}$ eig. of $H_{V}, \lambda_{q, j} \rightarrow \Lambda_{q}$

For $0 \leq V \leq C<X_{\perp}>^{-m_{\perp}}<x_{3}>^{-m_{3}}, m_{\perp}>0, m_{3}>2$ only a discret set of embbeded eig. [Bony-B.-Raikov '07, '10]

Compact. supp. pertub. of $H_{0}\left(H_{ \pm}=H_{0} \pm V, V \geq 0\right.$ or $H_{ \pm}$with B.C. $)$ 2) SSF: (Fe-Ra'04, B-Ra'19)

Assume $\frac{1}{C} \mathbf{1}_{K_{0}} \leq V \leq C \mathbf{1}_{K_{1}}, K_{0} \subset K_{1} \subset \mathbb{R}^{3}$ bounded Then, near a fixed Landau level Λ_{q} :

- For the pair $\left(H_{-}, H_{0}\right)$, as $\lambda \downarrow 0$,

- For the pair $\left(H_{+}, H_{0}\right)$, as $\lambda \downarrow 0$,

3) RESONANCES (Bo-B.-Ra '07, '10, B-Sa '16)

Compact. supp. pertub. of $H_{0}\left(H_{ \pm}=H_{0} \pm V, V \geq 0\right.$ or $H_{ \pm}$with B.C. $)$ 2) SSF: (Fe-Ra'04, B-Ra'19)

Assume $\frac{1}{C} \mathbf{1}_{K_{0}} \leq V \leq C \mathbf{1}_{K_{1}}, K_{0} \subset K_{1} \subset \mathbb{R}^{3}$ bounded Then, near a fixed Landau level Λ_{q} :

- For the pair $\left(H_{-}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right) \sim-\frac{|\ln \lambda|}{2 \ln |\ln \lambda|} \quad \Lambda_{q} \xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

- For the pair $\left(H_{+}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right)=O(1)
$$

$$
\xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

Compact. supp. pertub. of $H_{0}\left(H_{ \pm}=H_{0} \pm V, V \geq 0\right.$ or $H_{ \pm}$with B.C. $)$ 2) SSF: (Fe-Ra'04, B-Ra'19)

Assume $\frac{1}{C} \mathbf{1}_{K_{0}} \leq V \leq C \mathbf{1}_{K_{1}}, K_{0} \subset K_{1} \subset \mathbb{R}^{3}$ bounded Then, near a fixed Landau level Λ_{q} :

- For the pair $\left(H_{-}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right) \sim-\frac{|\ln \lambda|}{2 \ln |\ln \lambda|}
$$

$$
\xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

- For the pair $\left(H_{+}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right)=O(1)
$$

$$
\xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

3) RESONANCES (Bo-B.-Ra '07, '10, B-Sa '16)
$\#\left\{z \operatorname{Res} . ; \operatorname{dist}\left(z, \Lambda_{q}\right) \geq r\right\} \sim \frac{|\ln r|}{\ln |\ln r|}, r \downarrow 0$,

Compact. supp. pertub. of $H_{0}\left(H_{ \pm}=H_{0} \pm V, V \geq 0\right.$ or $H_{ \pm}$with B.C. $)$ Then, near a fixed Landau level Λ_{q} :

- For the pair $\left(H_{-}, H_{0}\right)$, as $\lambda \downarrow 0$,

- For the pair $\left(H_{+}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right)=O(1)
$$

$$
\xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

3) RESONANCES (Bo-B.-Ra '07, '10, B-Sa '16)
$\#\left\{z \operatorname{Res} . ; \operatorname{dist}\left(z, \Lambda_{q}\right) \geq r\right\} \sim \frac{|\ln r|}{\ln |\ln r|}, r \downarrow 0$,

Compact. supp. pertub. of $H_{0}\left(H_{ \pm}=H_{0} \pm V, V \geq 0\right.$ or $H_{ \pm}$with B.C. $)$ Then, near a fixed Landau level Λ_{q} :

- For the pair $\left(H_{-}, H_{0}\right)$, as $\lambda \downarrow 0$,

$$
\xi\left(\Lambda_{q}-\lambda\right) \sim-\frac{|\ln \lambda|}{2 \ln |\ln \lambda|} \quad \Lambda_{q} \quad \xi\left(\Lambda_{q}+\lambda\right) \sim \frac{|\ln \lambda|}{4 \ln |\ln \lambda|}
$$

- For the pair $\left(H_{+}, H_{0}\right)$, as $\lambda \downarrow 0$,

On a 2nd sheet where resonances are defined
3) RESONANCES (Bo-B.-Ra '07, '10, B-Sa '16)
$\#\left\{z \operatorname{Res} . ; \operatorname{dist}\left(z, \Lambda_{q}\right) \geq r\right\} \sim \frac{|\ln r|}{\ln |\ln r|}, r \downarrow 0$,

Dependence on the domain in the 2D case

Comp. Supp. perturbations of the Landau Ham. $\mathrm{H}_{0, \perp}$
Filonov-Pushnitski '06
$\left\{\nu_{k, q}\right\}_{k \in \mathbb{Z}_{+}}$eig. of the s.a., compact Toeplitz operator $p_{q} \mathbb{1}_{\mathcal{O}} p_{q}$, p_{q} : proj. onto $\operatorname{Ker}\left(H_{0, \perp}-\Lambda_{q}\right)$

$$
\ln \nu_{k, q}=-k \ln k+(\mathfrak{C}(\mathcal{O})-\ln 2) k+o(k), \quad k \rightarrow \infty
$$

$\mathfrak{C}(\mathcal{O}):=\ln \left(e b \operatorname{Cap}(\overline{\mathcal{O}})^{2}\right)$
$\operatorname{Cap}(K)$: the logarithmic capacity of $K: \operatorname{Cap}(K):=e^{-\mathcal{I}(K)}$ where

$$
\mathcal{I}(K):=\inf _{\mu \in \mathfrak{M}(K)} \int_{K \times K} \ln |x-y|^{-1} d \mu(x) d \mu(y) .
$$

Consequence:

Filonov-Pushnitski '06 $\left(H_{0, \perp} \pm \mathbb{1}_{\mathcal{O}}\right)$,
Pu.-Roz '07/GoKaPe '14 $\left(H_{\perp, \pm}\right.$: Diri./Neu. on $\left.\partial \mathcal{O}, \mathcal{O} \subset \mathbb{R}^{2}\right)$

$\lambda_{k, q}$ eigenvalues of $H_{0, \perp} \pm \mathbb{1}_{\mathcal{O}}$ (or $H_{\perp, \pm}$) near Λ_{q} satisfy:

for $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\lambda_{k, q} \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$, we have

Consequence:

Filonov-Pushnitski '06 $\left(H_{0, \perp} \pm \mathbb{1}_{\mathcal{O}}\right)$,
Pu.-Roz '07/GoKaPe '14 ($H_{\perp, \pm}$: Diri./Neu. on $\partial \mathcal{O}, \mathcal{O} \subset \mathbb{R}^{2}$)
b 3b bb db 9b

for $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\lambda_{k, q} \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$, we have

\square

Consequence:

Filonov-Pushnitski '06 $\left(H_{0, \perp} \pm \mathbb{1}_{\mathcal{O}}\right)$,
Pu.-Roz '07/GoKaPe '14 ($H_{\perp, \pm}$: Diri./Neu. on $\left.\partial \mathcal{O}, \mathcal{O} \subset \mathbb{R}^{2}\right)$

$\lambda_{k, q}$ eigenvalues of $H_{0, \perp} \pm \mathbb{1}_{\mathcal{O}}$ (or $H_{\perp, \pm}$) near Λ_{q} satisfy:
$\ln \left(\pm\left(\lambda_{k, q}-\Lambda_{q}\right)\right)=-k \ln k+(\mathfrak{C}(\mathcal{O})-\ln 2) k+o(k), \quad k \rightarrow \infty$,
for $\mathcal{N}_{ \pm}(\lambda):=\#\left\{\lambda_{k, q} \in \Lambda_{q} \pm\left(\lambda, r_{0}\right)\right\}, 0<\lambda<r_{0}<2 b$, we have

$$
\mathcal{N}_{ \pm}(\lambda)=\Phi_{1}(\lambda, \mathfrak{C}(\mathcal{O})-\ln 2)+o\left(\frac{|\ln \lambda|}{\ln _{2}(\lambda)^{2}}\right) \quad \lambda \searrow 0
$$

$$
\Phi_{1}(\lambda ; C):=\Phi_{0}(\lambda)\left(1+\frac{\ln _{3}(\lambda)}{\ln _{2}(\lambda)}+\frac{c}{\ln _{2}(\lambda)}\right), \ln _{3}(\lambda):=\ln \ln _{2}(\lambda),
$$

Asymptotic behavior of the SSF near Λ_{q} in the 3D case

 Let $\mathcal{O}_{\text {in }}$ be the projection of $\Omega_{\text {in }}$ onto the plane \perp to \vec{B} :$$
\mathcal{O}_{\mathrm{in}}:=\pi_{\perp}\left(\Omega_{\mathrm{in}}\right):=\left\{X_{\perp} \in \mathbb{R}^{2} \mid \exists x_{\|} \in \mathbb{R} \text { s.t. }\left(X_{\perp}, x_{\|}\right) \in \Omega_{\mathrm{in}}\right\}
$$

Theorem 2

Let $q \in \mathbb{Z}_{+}$. Under assumption \mathcal{A} (see after) for Ω_{in}, we have
(i) $\xi\left(\Lambda_{q}-\lambda ; H_{-}, H_{0}\right)=-\frac{1}{2} \Phi_{1}\left(\lambda ; \mathfrak{C}\left(\mathcal{O}_{\text {in }}\right)\right)+o\left(\frac{|\ln \lambda|}{\ln _{2}(\lambda)^{2}}\right)$
(ii) $\xi\left(\Lambda_{q}+\lambda ; H_{ \pm}, H_{0}\right)= \pm \frac{1}{4} \Phi_{1}\left(\lambda ; \mathfrak{C}\left(\mathcal{O}_{\text {in }}\right)\right)+o\left(\frac{|\ln \lambda|}{\ln (\lambda)^{2}}\right)$
$\mathfrak{C}(\mathcal{O}):=\ln \left(e b \operatorname{Cap}(\overline{\mathcal{O}})^{2}\right)$
$\Phi_{1}(\lambda ; C):=\Phi_{0}(\lambda)\left(1+\frac{\ln _{3}(\lambda)}{\ln _{2}(\lambda)}+\frac{C}{\ln _{2}(\lambda)}\right), \Phi_{0}(\lambda):=\frac{|\ln r|}{\ln (\lambda)}$
$\ln _{3}(\lambda):=\ln \ln _{2}(\lambda), \ln _{2}(\lambda):=\ln \ln (\lambda)$,

Definition: $\Omega_{\text {in }}$ satisfies assumption \mathcal{A} if:

\exists adjacent sequences $\left\{\Omega_{j,<}\right\}_{j \in \mathbb{N}} \nearrow$ and $\left\{\Omega_{j,>}\right\}_{j \in \mathbb{N}} \searrow$ s.t.:
(i) $\bar{\Omega}_{j, \ll} \subset \Omega_{\text {in }} \subset \bar{\Omega}_{\text {in }} \subset \Omega_{j,>,}, j \in \mathbb{N}$;
(ii) For $\mathcal{O}_{j,<}:=\pi_{\perp}\left(\Omega_{j,<}\right)$ and $\mathcal{O}_{j,>}:=\pi_{\perp}\left(\Omega_{j,>}\right), j \in \mathbb{N}$, $\partial \mathcal{O}_{j,<}$ and $\partial \mathcal{O}_{j,>}$ are Lipschitz
(iii) For $\mathcal{O}_{\text {in }}:=\pi_{\perp}\left(\Omega_{\text {in }}\right)$;

$$
\lim _{j \rightarrow \infty} \operatorname{Cap}\left(\overline{\mathcal{O}}_{j,<}\right)=\lim _{j \rightarrow \infty} \operatorname{Cap}\left(\overline{\mathcal{O}}_{j,>}\right)=\operatorname{Cap}\left(\overline{\mathcal{O}}_{\mathrm{in}}\right)
$$

(iv) For any $j \in \mathbb{N}$,

$$
\inf _{x_{\perp} \in \mathcal{O}_{j,<}} \int_{\mathbb{R}} \mathbb{1}_{\Omega_{j+1,<}}\left(X_{\perp}, x_{\|}\right) d x_{\|}>0, \quad j \in \mathbb{N} .
$$

Evidently, any ball (or ellipsoid) in \mathbb{R}^{3} satisfies assumption \mathcal{A}.

Exemples

III) Ideas of the proof

We have

$$
\xi\left(E ; H_{ \pm}, H_{0}\right)=-\xi\left(\frac{1}{E} ; H_{ \pm}^{-1}, H_{0}^{-1}\right)
$$

$H_{ \pm}^{-1}$ and H_{0}^{-1} defined in $L^{2}\left(\mathbb{R}^{3}\right)$ and $H_{ \pm}^{-1}=H_{0}^{-1} \mp V_{ \pm}$with

$$
V_{+}:=H_{0}^{-1}-H_{+}^{-1} \geq 0, \quad V_{-}:=H_{-}^{-1}-H_{0}^{-1} \geq 0
$$

Step 1: Pushnitski's representation formula (Push. '97) \Longrightarrow study of the Birman-Schwinger operator:

III) Ideas of the proof

We have

$$
\xi\left(E ; H_{ \pm}, H_{0}\right)=-\xi\left(\frac{1}{E} ; H_{ \pm}^{-1}, H_{0}^{-1}\right)
$$

$H_{ \pm}^{-1}$ and H_{0}^{-1} defined in $L^{2}\left(\mathbb{R}^{3}\right)$ and $H_{ \pm}^{-1}=H_{0}^{-1} \mp V_{ \pm}$with

$$
V_{+}:=H_{0}^{-1}-H_{+}^{-1} \geq 0, \quad V_{-}:=H_{-}^{-1}-H_{0}^{-1} \geq 0
$$

Step 1: Pushnitski's representation formula (Push. '97)
\Longrightarrow study of the Birman-Schwinger operator:

$$
\begin{aligned}
V_{ \pm}^{\frac{1}{2}}\left(H_{0}^{-1}-E^{-1}\right)^{-1} V_{ \pm}^{\frac{1}{2}} & =E V_{ \pm}^{\frac{1}{2}} H_{0}\left(E-H_{0}\right)^{-1} V_{ \pm}^{\frac{1}{2}} \\
& =-E V_{ \pm}-E^{2} V_{ \pm}^{\frac{1}{2}}\left(H_{0}-E\right)^{-1} V_{ \pm}^{\frac{1}{2}}
\end{aligned}
$$

Step 2: Let $\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; p_{\|}=<\cdot, 1>1$.
Following Fe-Ra'04, as $\lambda \downarrow 0$, we have

Proposition 1

Step 2: Let $\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; p_{\|}=<\cdot, 1>1$.
Following Fe-Ra'04, as $\lambda \downarrow 0$, we have

Proposition 1

$$
\xi\left(\Lambda_{q}-\lambda ; H_{+}, H_{0}\right)=O(1)
$$

Step 2: Let $\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; p_{\|}=<\cdot, 1>1$.
Following Fe-Ra'04, as $\lambda \downarrow 0$, we have

Proposition 1

$$
\begin{aligned}
& \xi\left(\Lambda_{q}-\lambda ; H_{+}, H_{0}\right)=O(1) \\
& \begin{aligned}
&-\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}-\lambda ; H_{-}, H_{0}\right) \\
& \leq-\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
& \frac{1}{\pi} \operatorname{Tr} \cdot \arctan \left(\frac{\mathcal{M}_{q}^{+}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}+\lambda ; H_{+}, H_{0}\right) \\
& \leq \frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
&-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}+\lambda ; H_{-} H_{0}\right) \\
& \leq-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1)
\end{aligned}
\end{aligned}
$$

Step 2: Let $\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; p_{\|}=<\cdot, 1>1$.
Following Fe-Ra'04, as $\lambda \downarrow 0$, we have

Proposition 1

$$
\begin{aligned}
& \xi\left(\Lambda_{q}-\lambda ; H_{+}, H_{0}\right)=O(1), \\
& -\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}-\lambda ; H_{-}, H_{0}\right) \\
& \leq-\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
& \frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{+}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}+\lambda ; H_{+}, H_{0}\right) \\
& \leq \frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{+}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
& \begin{aligned}
-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) & \leq \xi\left(\Lambda_{q}+\lambda ; H_{-}, H_{0}\right) \\
& \leq-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1)
\end{aligned}
\end{aligned}
$$

Step 2: Let $\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; p_{\|}=<\cdot, 1>1$.
Following Fe-Ra'04, as $\lambda \downarrow 0$, we have

Proposition 1

$$
\begin{aligned}
& \xi\left(\Lambda_{q}-\lambda ; H_{+}, H_{0}\right)=O(1) \\
& -\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \leq \xi\left(\Lambda_{q}-\lambda ; H_{-}, H_{0}\right) \\
& \quad \leq-\operatorname{Tr} \mathbb{1}_{[1,+\infty)}\left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
& \begin{aligned}
\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{+}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O & (1) \leq \xi\left(\Lambda_{q}+\lambda ; H_{+}, H_{0}\right) \\
& \leq \frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{+}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+O(1) \\
-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1-\epsilon) 2 \sqrt{\lambda}}\right)+ & O(1) \leq \xi\left(\Lambda_{q}+\lambda ; H_{-}, H_{0}\right) \\
& \leq-\frac{1}{\pi} \operatorname{Tr} \arctan \left(\frac{\mathcal{M}_{q}^{-}}{(1+\epsilon) 2 \sqrt{\lambda}}\right)+O(1)
\end{aligned}
\end{aligned}
$$

The non zero eigenvalues of

$$
\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; \quad p_{\|}=<\cdot, 1>1
$$

coincide with eigenvalues of

$$
\Lambda_{q}^{2} p_{q}\left(\int_{\mathbb{R}} V_{ \pm} d x_{3}\right) p_{q}
$$

$\left(0 \neq\right.$ e.v. $\left(T T^{*}\right)=$ e.v. $\left.\left(T^{*} T\right)\right)$
Step 3: Localization near $\Gamma: \forall w \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right), w=1$ near Γ,

The non zero eigenvalues of

$$
\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; \quad p_{\|}=<\cdot, 1>1
$$

coincide with eigenvalues of

$$
\Lambda_{q}^{2} p_{q}\left(\int_{\mathbb{R}} V_{ \pm} d x_{3}\right) p_{q}
$$

$\left(0 \neq\right.$ e.v. $\left(T T^{*}\right)=$ e.v. $\left.\left(T^{*} T\right)\right)$
Step 3: Localization near $\Gamma: \forall w \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right), w=1$ near Γ, $\overline{H_{0}(1-w)}=H_{ \pm}(1-w) \quad \Longrightarrow \quad V_{ \pm}=H_{0}^{-1} w H_{0} V_{ \pm} H_{0} w H_{0}^{-1}$

The non zero eigenvalues of

$$
\mathcal{M}_{q}^{ \pm}:=\Lambda_{q}^{2} V_{ \pm}^{\frac{1}{2}}\left(p_{q} \otimes p_{\|}\right) V_{ \pm}^{\frac{1}{2}} ; \quad p_{\|}=<\cdot, 1>1
$$

coincide with eigenvalues of

$$
\Lambda_{q}^{2} p_{q}\left(\int_{\mathbb{R}} V_{ \pm} d x_{3}\right) p_{q}
$$

$\left(0 \neq\right.$ e.v. $\left(T T^{*}\right)=$ e.v. $\left.\left(T^{*} T\right)\right)$
Step 3: Localization near $\Gamma: \forall w \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right), w=1$ near Γ, $\overline{H_{0}(1-w)}=H_{ \pm}(1-w) \quad \Longrightarrow \quad V_{ \pm}=H_{0}^{-1} w H_{0} V_{ \pm} H_{0} w H_{0}^{-1}$

$$
\Longrightarrow \quad \Lambda_{q}^{2} p_{q}\left(\int_{\mathbb{R}} V_{ \pm} d x_{3}\right) p_{q}=p_{q}\left(\int_{\mathbb{R}} w H_{0} V_{ \pm} H_{0} w d x_{\|}\right) p_{q}
$$

Step 4:

Proposition 2

Let $\Omega_{<} \subset \Omega_{\text {in }} \subset \Omega_{>}$as in Assumption \mathcal{A} Let $\mathcal{E}_{q}\left(\Omega_{>}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{3}\right) \cap C^{\infty}\left(\mathbb{R}^{3}\right) ;\left(H_{0}-\Lambda_{q}\right) f=0\right.$ on $\left.\Omega_{>}\right\}$ Then there exists \mathcal{L}_{q} a finite codimension subspaces of $\mathcal{E}_{q}\left(\Omega_{>}\right)$ and $C>1$ s. t. $\forall f \in \mathcal{L}_{q}$,

$$
\frac{1}{C}\left\langle f, \mathbf{1}_{\Omega_{<}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \leq\left\langle H_{0} w f, V_{ \pm} H_{0} w f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C\left\langle f, \mathbf{1}_{\Omega_{>}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

\Longrightarrow Theorem follows using that

Step 4:

Proposition 2

Let $\Omega_{<} \subset \Omega_{\text {in }} \subset \Omega_{>}$as in Assumption \mathcal{A} Let $\mathcal{E}_{q}\left(\Omega_{>}\right)=\left\{f \in L^{2}\left(\mathbb{R}^{3}\right) \cap C^{\infty}\left(\mathbb{R}^{3}\right) ;\left(H_{0}-\Lambda_{q}\right) f=0\right.$ on $\left.\Omega_{>}\right\}$ Then there exists \mathcal{L}_{q} a finite codimension subspaces of $\mathcal{E}_{q}\left(\Omega_{>}\right)$ and $C>1$ s. t. $\forall f \in \mathcal{L}_{q}$,

$$
\frac{1}{C}\left\langle f, \mathbf{1}_{\Omega_{<}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \leq\left\langle H_{0} w f, V_{ \pm} H_{0} w f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \leq C\left\langle f, \mathbf{1}_{\Omega_{>}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

\Longrightarrow Theorem follows using that

$$
\begin{gathered}
c \mathbb{1}_{\mathcal{O}_{j,<}}\left(X_{\perp}\right) \leq \int_{\mathbb{R}} \mathbb{1}_{\Omega_{j+1,<}}\left(X_{\perp}, x_{\|}\right) d x_{\|} \\
\int_{\mathbb{R}} \mathbb{1}_{\Omega_{j+1,>}}\left(X_{\perp}, x_{\|}\right) d x_{\|} \leq c \mathbb{1}_{\mathcal{O}_{j+1,\rangle}}\left(X_{\perp}\right)
\end{gathered}
$$

Proof of the lower bound of Proposition 2

$$
\left\langle H_{0} w f, V_{ \pm} H_{0} w f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \geq \frac{1}{C}\left\langle f, \mathbf{1}_{\Omega_{<}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

Proof of the lower bound of Proposition 2

$$
\left\langle H_{0} w f, V_{ \pm} H_{0} w f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \geq \frac{1}{C}\left\langle f, \mathbf{1}_{\Omega_{<}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

For V_{+}:

$$
\begin{aligned}
& V_{+}:=H_{0}^{-1}-H_{+, \text {in }}^{-1} \oplus H_{+, \text {ex }}^{-1}=V_{+, 0}-H_{+, \text {in }}^{-1} \oplus 0, \text { with } \\
& V_{+, 0}:=H_{0}^{-1}-0 \oplus H_{+, \text {ex }}^{-1} \geq\left(H_{0}^{-1}-\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}\right)
\end{aligned}
$$

because

$$
V_{+, 0}=\left(H_{0}^{-1}-\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}\right)+\left(\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}-0 \oplus H_{+, \mathrm{ex}}^{-1}\right)
$$

Proof of the lower bound of Proposition 2

$$
\left\langle H_{0} w f, V_{ \pm} H_{0} w f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)} \geq \frac{1}{C}\left\langle f, \mathbf{1}_{\Omega_{<}} f\right\rangle_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

For V_{+}:
$V_{+}:=H_{0}^{-1}-H_{+, \text {in }}^{-1} \oplus H_{+, \text {ex }}^{-1}=V_{+, 0}-H_{+, \text {in }}^{-1} \oplus 0$, with $V_{+, 0}:=H_{0}^{-1}-0 \oplus H_{+, \text {ex }}^{-1} \geq\left(H_{0}^{-1}-\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}\right)$
because
$V_{+, 0}=\left(H_{0}^{-1}-\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}\right)+\left(\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}-0 \oplus H_{+, \mathrm{ex}}^{-1}\right)$
We conclude using

$$
\begin{aligned}
& H_{0}^{-1}-\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1}= \\
& H_{0}^{-1} \mathbb{1}_{\Omega_{<}}\left(I-\mathbb{1}_{\Omega_{<}}\left(H_{0}+\mathbb{1}_{\Omega_{<}}\right)^{-1} \mathbb{1}_{\Omega_{<}}\right) \mathbb{1}_{\Omega_{<}} H_{0}^{-1} \geq H_{0}^{-1} \mathbb{1}_{\Omega_{<}} H_{0}^{-1}
\end{aligned}
$$ on a finite codim. subsp.

For V_{-}:

$$
\begin{aligned}
& V_{-}:=H_{-, \text {in }}^{-1} \oplus H_{- \text {ex }}^{-1}-H_{0}^{-1}=V_{-, 0}-\delta H_{-, \text {in }}^{-1} \oplus 0, \delta>0 \text { with } \\
& V_{-, 0}:=(1+\delta) H_{-, \text {in }}^{-1} \oplus H_{-, \text {ex }}^{-1}-H_{0}^{-1}
\end{aligned}
$$

There exists $\kappa>0$ st.:

We conclude using

For V_{-}:
$V_{-}:=H_{-, \text {in }}^{-1} \oplus H_{-, \text {ex }}^{-1}-H_{0}^{-1}=V_{-, 0}-\delta H_{-, \text {in }}^{-1} \oplus 0, \delta>0$ with
$V_{-, 0}:=(1+\delta) H_{-, \text {in }}^{-1} \oplus H_{-, \mathrm{ex}}^{-1}-H_{0}^{-1}$
There exists $\kappa>0$ s.t.:

$$
V_{-, 0} \geq\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)
$$

because $V_{-, 0}=$

$$
\left((1+\delta) H_{-, \text {in }}^{-1} \oplus H_{-, \mathrm{ex}}^{-1}-\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}\right)+\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)
$$

We conclude using
$\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)=$
$\kappa H_{0}^{-1} \mathbb{1}_{\Omega_{<}}\left(I+\kappa \mathbb{1}_{\Omega_{<}}\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1} \mathbb{1}_{\Omega_{<}}\right) \mathbb{1}_{\Omega_{<}} H_{0}^{-1}$

For V_{-}:

$$
\begin{aligned}
& V_{-}:=H_{-, \text {in }}^{-1} \oplus H_{-, \text {ex }}^{-1}-H_{0}^{-1}=V_{-, 0}-\delta H_{-, \text {in }}^{-1} \oplus 0, \delta>0 \text { with } \\
& V_{-, 0}:=(1+\delta) H_{-, \text {in }}^{-1} \oplus H_{-, \text {ex }}^{-1}-H_{0}^{-1}
\end{aligned}
$$

There exists $\kappa>0$ s.t.:

$$
V_{-, 0} \geq\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)
$$

because $V_{-, 0}=$
$\left((1+\delta) H_{-, \text {in }}^{-1} \oplus H_{-, \text {ex }}^{-1}-\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}\right)+\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)$,
We conclude using
$\left(\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1}-H_{0}^{-1}\right)=$
$\kappa H_{0}^{-1} \mathbb{1}_{\Omega_{<}}\left(I+\kappa \mathbb{1}_{\Omega_{<}}\left(H_{0}-\kappa \mathbb{1}_{\Omega_{<}}\right)^{-1} \mathbb{1}_{\Omega_{<}}\right) \mathbb{1}_{\Omega_{<}} H_{0}^{-1}$

$$
\geq \kappa H_{0}^{-1} \mathbb{1}_{\Omega_{<}} H_{0}^{-1}
$$

Conclusion on the 3D magnetic problem with obstacle Ω_{in} : As $\lambda \downarrow 0$, the SSF satisfies in particular :
$\xi\left(\Lambda_{q}+\lambda ; H_{ \pm, \mathrm{ex}}, H_{0}\right)=$

$$
\pm \frac{1}{4}\left(\frac{|\ln \lambda|}{\ln _{2}(\lambda)}+\frac{|\ln \lambda| \ln _{3}(\lambda)}{\ln _{2}(\lambda)^{2}}+\frac{|\ln \lambda| \mathfrak{C}\left(\mathcal{O}_{\text {in }}\right)}{\ln _{2}(\lambda)^{2}}\right)+o\left(\frac{|\ln \lambda|}{\ln _{2}(\lambda)^{2}}\right)
$$

with:
$\mathfrak{C}(\mathcal{O}):=\ln \left(e b \operatorname{Cap}(\overline{\mathcal{O}})^{2}\right)$
$\mathcal{O}_{\text {in }}:=\pi_{\perp}\left(\Omega_{\text {in }}\right):=\left\{X_{\perp} \in \mathbb{R}^{2} \mid \exists x_{\|} \in \mathbb{R}\right.$ s.t. $\left.\left(X_{\perp}, x_{\|}\right) \in \Omega_{\text {in }}\right\}$ Under assumption \mathcal{A}
Question: Is it a technical assumption? Or more fundamental?

Conclusion on the 3D magnetic problem with obstacle Ω_{in} : As $\lambda \downarrow 0$, the SSF satisfies in particular :
$\xi\left(\Lambda_{q}+\lambda ; H_{ \pm, \mathrm{ex}}, H_{0}\right)=$

$$
\pm \frac{1}{4}\left(\frac{|\ln \lambda|}{\ln _{2}(\lambda)}+\frac{|\ln \lambda| \ln _{3}(\lambda)}{\ln _{2}(\lambda)^{2}}+\frac{|\ln \lambda| \mathfrak{C}\left(\mathcal{O}_{\text {in }}\right)}{\ln _{2}(\lambda)^{2}}\right)+o\left(\frac{|\ln \lambda|}{\ln 2(\lambda)^{2}}\right)
$$

with:
$\mathfrak{C}(\mathcal{O}):=\ln \left(e b \operatorname{Cap}(\overline{\mathcal{O}})^{2}\right)$
$\mathcal{O}_{\text {in }}:=\pi_{\perp}\left(\Omega_{\text {in }}\right):=\left\{X_{\perp} \in \mathbb{R}^{2} \mid \exists x_{\|} \in \mathbb{R}\right.$ s.t. $\left.\left(X_{\perp}, x_{\|}\right) \in \Omega_{\text {in }}\right\}$ Under assumption \mathcal{A}
Question: Is it a technical assumption? Or more fundamental?

