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Abstract

We revisit an interesting example proposed by Maria and Thomas
Hoffmann-Ostenhof, together with Nikolai Nadirashvili of a
bounded domain in R2 for which the second eigenvalue of the
Dirichlet Laplacian has multiplicity 3. We also analyze carefully the
first eigenvalues of the Laplacian in the case of the disk with two
symmetric cracks placed on a smaller concentric disk in function of
their size.
This is a common work with Thomas Hoffmann-Ostenhof, François
Jauberteau and Corentin Léna.



Introduction

The motivating problem is to analyze the multiplicity of the k-th
eigenvalue of the Dirichlet problem in a domain Ω in R2. It is for
example an old result of Cheng [Ch1976], that the multiplicity of
the second eigenvalue is at most 3.
In [HOHON2–1997], M and T. Hoffmann-Ostenhof and N.
Nadirashvili give an example with multiplicity 3 is given as a side
product of the production of a counter example to the nodal line
conjecture (see also [HOHON1–1997], and the papers by
S. Fournais [Fo2001] and J.B. Kennedy [K2013] who extend to
higher dimensions these counter examples, introducing new
methods).
This example is based on the spectral analysis of the Laplacian in
domains consisting of a disc in which is introduced an interior
concentric circle suitable cracks.



The initial proof contained a gap and our aim is to fill the gap and
discuss extensions.
Although not needed for the positive results, we also propose a fine
theoretical analysis of the spectral problem when the cracks are
closing.



Main statement

The starting point for the construction of counterexamples to the
nodal line conjecture is the introduction of two concentric open
discs BR1 and BR2 with 0 < R1 < R2 and the corresponding
annulus MR1,R2 = BR2 \ B̄R1 . The authors choose R1 and R2 such
that

(A) λ1(BR1) < λ1(MR1,R2) < λ2(BR1) ,

where, for ω ⊂ R2 bounded, λj(ω) denotes the j-th eigenvalue of
the Dirichlet Laplacian H in ω.



Then we introduce

DR1,R2 = BR1 ∪MR1,R2

and observe that

λ1(DR1,R2) = λ1(BR1)
λ2(DR1,R2) = λ1(MR1,R2)
λ3(DR1,R2) = min(λ2(BR1), λ2(MR1,R2)) .



If Condition (A) was important in the construction of the
counter-example to the nodal line conjecture, the weaker
assumption

(B) max(λ1(BR1), λ1(MR1,R2)) < min(λ2(BR1), λ2(MR1,R2)) .
(1)

suffices for the multiplicity question. Under this condition, we have:

λ1(DR1,R2) = min(λ1(BR1), λ1(MR1,R2))
λ2(DR1,R2) = max(λ1(BR1), λ1(MR1,R2))
λ3(DR1,R2) = min(λ2(BR1), λ2(MR1,R2)) ,

(2)

and it is not excluded to consider the case
λ1(DR1,R2) = λ2(DR1,R2).
We actually make this choice in the numerics.



We now carve holes in ∂BR1 such that DR1,R2 becomes a domain.
For N ∈ N∗ := N \ {0} and ε ∈ [0, πN ], we introduce

D(N, ε) = DR1,R2 ∪
N−1
j=0 {x ∈ R2 , r = R1 , θ ∈ (

2πj

N
− ε, 2πj

N
+ ε)} .

(3)

Figure: The domains with cracks for N = 2, N = 3 and N = 4.



The theorem stated in [HOHON2–1997] is the following:

Main Theorem

Let N ≥ 3, then there exists ε ∈ (0, πN ) such that λ2(D(N, ε)) has
multiplicity 3.

The proof given in [HOHON2] can only work for even integers
N ≥ 4 (with a need for additional arguments). So we improve the
result by giving an example Ω := D(3, ε) where the number of
components of ∂Ω equals 4, hence N = 3.



Remark

Our main theorem leads to the following open question:

Is there a bounded domain Ω ⊂ R2 whose boundary ∂Ω has
strictly less than 4 components so that λ2(Ω) has multiplicity 3?

The natural conjecture would be that for simply connected
domains Ω, λ2(Ω) has at most multiplicity 2.

At the moment it is only proven for convex planar domains or for
simply connected domains for which the nodal line conjecture
holds true (see Lin–1987).



Symmetry spaces

We recall some basic representation theory. We consider a
Hamiltonian which is the Dirichlet realization of the Laplacian in
an open set Ω which is invariant by the action of the group GN

generated by the rotation g by 2π
N .

The Hilbert space is H := L2(Ω,R) but it is also convenient to
work in HC := L2(Ω,C). In this case, it is natural to analyze the
eigenspaces attached to the irreducible representations of GN .

The theory will in particular apply for the family of open sets
Ω = D(N, ε).



The theory is simpler for complex Hilbert spaces i.e.
HC := L2(Ω,C), but the multiplicity property appears when
considering operators on real Hilbert spaces, i.e H := L2(Ω,R).
If we work in HC, we introduce for ` = 0, · · · ,N − 1,

B` = {w ∈ HC | gw = e2πi`/Nw} . (4)

For ` = 0, this corresponds to the invariant situation.
We also observe that the complex conjugation sends B` onto
BN−`. Hence, except in the cases ` = 0 and ` = N

2 the
corresponding eigenspace are of even dimension.
The second case appears only if N is even.



For 2` 6= N, one can alternately come back to real vector spaces by
introducing for 0 < ` < N

2 (` ∈ N)

C` = B` ⊕ BN−` (5)

and observing that C` can be recognized as the complexification of
the real vector space A`

A` = {u ∈ H | u − 2 cos(2`π/N)gu + g2u = 0} (6)

such that
C` = A` ⊗ C (7)

where (6) follows from an easy computation based on (4).
For ` = 0 and ` = N

2 (if N is even), we define A` by

B` = A` ⊗ C . (8)



Under the invariance condition on the domain, the Dirichlet
Laplacian commutes with the natural action of g in L2. Hence we
get for 0 ≤ ` ≤ N/2 a family of selfadjoint operators H(`) obtained
by restriction of H to A` (with domain D(H) ∩ A`). Except for
` = 0 and ` = N

2 all the eigenspaces of H(`) have even multiplicity.

The other point is that Stollmann’s theory [Sto] works for the
spectrum of H(`)(ε,N) associated with the Dirichlet realization
H(ε,N) of the Laplacian in DN,ε. Hence we have continuity and
monotonicity with respect to ε of the eigenvalues. Note also that

σ(H(ε,N)) = ∪0≤`≤N
2
σ(H(`)(ε,N)) .



When N is even, a particular role is played by g
N
2 which

corresponds to the inversion considered in [HOHON2]. One can
indeed decompose the Hilbert space H (or HC) using the

symmetry with respect to g
N
2 and get the decomposition

H = Heven ⊕Hodd , (9)

and
H(ε,N) = Heven(ε,N)⊕ Hodd(ε,N) . (10)

We observe that A` belongs to Heven if ` is even and to Hodd if `
is odd.



Upper bound: the regularity assumptions in Cheng’s
statement revisited

In [Ch], S.Y. Cheng proved that the multiplicity of the second
eigenvalue is at most 3. Cheng’s proof is actually using a regularity
assumption which is not satisfied by D(N, ε). This domain has
indeed cracks and we need a description of the nodal line structure
near corners or cracks. The extension can be obtained by using a
paper of Helffer, Hoffmann-Ostenhof, and Terracini [HHOT–2009].

With this complementary analysis near the cracks, we can follow
the main steps of the proof given in
Hoffmann-Ostenhof-Michor-Nadirashvili [HOMN–1999]. This proof
includes an extended version of Euler’s Polyhedral formula.



Proposition Euler

Let Ω be a C 1,+-domain1 with possibly corners of opening2 απ for
0 < α ≤ 2. If u is an eigenfunction of the Dirichlet Laplacian in Ω,
N denotes the nodal set of u and µ(N ) denotes the cardinality of
the components of Ω \ N , i.e. the number of nodal domains, then

µ(N ) ≥
∑

x∈N∩Ω

(ν(x)− 1) + 2 , (11)

where ν(x) is the multiplicity of the critical point x ∈ N (i.e. the
number of lines crossing at x).

1C 1,+ means C 1,ε for some ε > 0.
2α = 2 corresponds to the crack case.



For a second eigenfunction µ(N ) = 2, and the upper bound of the
multiplicity by 3 comes by contradiction. Assuming that the
multiplicity of the second eigenvalue is ≥ 4, one can, for any
x ∈ Ω, construct some u in the second eigenspace such that
ν(x) ≥ 2. This gives the contradiction with Euler’s formula.

Hence we have

Proposition

Let Ω be a C 1,+-domain with possibly corners of opening απ for
0 < α ≤ 2. Then the multiplicity of the second eigenvalue of the
Dirichlet Laplacian in Ω is not larger than 3.



Remark

An upper bound of the multiplicity by 2 is obtained by C.S. Lin
when Ω is convex ([Li-1987]). Lin’s theorem can be extended to
the case of a simply connected domain for which the nodal line
conjecture holds. If the multiplicity of the second eigenvalue is
larger than 2, one can indeed find in the associated spectral space
an eigenfunction whose nodal set contains a point in the boundary
where two half lines hit the boundary. This will contradict either
the nodal line conjecture or Courant’s theorem. See also
[HOHON2] for some sufficient conditions on domains for the nodal
line conjecture to hold.



Proof of Main Theorem

We first observe that for the disk of radius R we have

λ1(BR) < λ2(BR) = λ3(BR) < λ4(BR) = λ5(BR) < λ6(BR) .

The eigenfunctions u1 and u6 are radial. We use this property with
R = R2.

Proposition

For N ≥ 3, there exists ε ∈ (0, πN ) s. t. λ2(H(ε,N)) belongs to

σ(H(`)(ε,N)) for some 0 < ` < N
2 AND to σ(H(`)(ε,N)) for ` = 0

or (in the case N even) N
2 . In particular, the multiplicity of λ2 for

this value of ε is exactly 3.



Proof

Note that the condition N ≥ 3 implies the existence of at least one
` ∈ (0, N2 ).
We now proceed by contradiction. Suppose the contrary. By
continuity of the second eigenvalue, we should have

I either λ2(H(ε,N)) belongs to ∪0<`<N
2
σ(H(`)(ε,N))) and not

to
σ(H(0)(ε,N)) ∪ σ(H(N/2)(ε,N)) for any ε,

I or λ2(H(ε,N)) belongs to σ(H(0)(ε,N)) ∪ σ(H(N/2)(ε,N))
and not to
∪0<`<N

2
σ(H(`)(ε,N))) for any ε.



But, the analysis for ε > 0 small enough shows that we should be
in the first case and the analysis for ε close to π

N that we should be
in the second case. Hence a contradiction.

The analysis for ε > 0 very small is by perturbation a consequence
of the analysis of ε = 0. Here we see that under Condition (A)
λ2(DR1,R2) is simple and belongs to σ(H(0)(0,N)).



Remark

If we only have Condition (B), we observe that the two first
eigenvalues belong to σ(H(0)(0,N)) and the argument is
unchanged.

The analysis for ε close to π
N is by perturbation a consequence of

the analysis of ε = π
N .

We have seen that λ2(BR2) has multiplicity two corresponding to
` = 1, hence in σ(H(1)( πN ,N)).

So we have proven that for this value of ε the multiplicity is at least
three, hence equals three by the extension of Cheng’s statement.



For the specific choice of the pair (R1,R2), corresponding to the
choice λ1(BR1) = λ1(MR1,R2), the numerics illustrates the
statement of the main theorem when N = 3, N = 4 and N = 6. In
this case λ1(BR1) is an eigenvalue for any ε.
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Figure: N = 3. Six lowest eigenvalues of the Laplacian in D(N, ε)) in
function of ε ∈ (0, π3 ), with R1 = 0.4356, R2 = 1.
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Figure: N = 4. Eight lowest eigenvalues of the Laplacian in D(N, ε)) in
function of ε ∈ (0, π2 ), with R1 = 0.4356, R2 = 1.
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Figure: The case N = 6. Twelve first eigenvalues (R1 = 0.4356)



Theoretical asymptotics in domains with cracks

We analyze theoretically the behavior of the eigenvalue as ε tends
to π

2 . This improves the general results based on Stollmann
[Sto-1995].

We now fix N = 2 and consider 0 < R1 < R2. We analyze the
different spectral problems according to the symmetries. This leads
us to consider on the quarter of a disk (0 < θ < π

2 ) four different
models. On the exterior circle and on the cracks, we assume the
Dirichlet condition and then, according to the boundary conditions
retained for θ = 0 and θ = π/2, we consider four test cases.



The four cases

I Case NND (homogeneous Neumann boundary conditions for
θ = 0 and θ = π/2).

I Case DDD (homogeneous Dirichlet boundary conditions for
θ = 0 and θ = π/2).

I Case NDD (homogeneous Neumann boundary conditions for
θ = 0 and homogeneous Dirichlet boundary conditions for
θ = π/2).

I Case DND (homogeneous Dirichlet boundary conditions for
θ = 0 and homogeneous Neumann boundary conditions for
θ = π/2).

This is immediately related to the problem on the cracked disk by
using the symmetries with respect to the two axes. The symmetry
properties lead either to Dirichlet or Neumann. We just refer to
two cases.



The cases NND and DND

We use the notation

B+
R2

:= BR2 ∩ {x2 > 0} ;

x± := (0,±R1) ;
δ := π

2 − ε ;
Kδ := {x ; r = R1, θ ∈ [−π/2− δ,−π/2 + δ] ∩ [π/2− δ, π/2 + δ]} ;
K+
δ := Kδ ∩ {x2 > 0} ;

K−δ := Kδ ∩ {x2 < 0} .

By the symmetry arguments,

λNND
1 (D̂(2, ε)) = λ1(BR2 \ Kδ);

λDND
1 (D̂(2, ε)) = λ1(B+

R2
\ K+

δ ).

The family of compact sets (Kδ)δ>0 concentrates to the set
{x+, x−}, in the sense that Kδ is contained in any open
neighborhood of {x+, x−} for δ small enough.



Reference [AFHL2018] (Abatangello-Felli-Hillairet-Léna) provides
two-term asymptotic expansions in this situation.

λ1(B+
R2
\K+

δ ) = λ1(B+
R2

)+u(x+)2 2π∣∣log(diam(K+
δ )
∣∣+o

(
1∣∣log(diam(K+

δ )
∣∣
)
,

where diam(K+
δ ) is the diameter of K+

δ and u an eigenfunction
associated with λ1(B+

R2
), normalized in L2(B+

R2
). Using

diam(K+
δ ) = 2R1 sin(δ) we get after simplification

λDND
1 (D̂(2, ε)) = j2

1,1+

+
8

R2
2

(
J1(j1,1R1/R2)

J ′1(j1,1)

)2 1

|log(π/2− ε)|
+ o

(
1

|log(π/2− ε)|

)
,

(12)

where j`,k is the k-th zero of the Bessel function J` corresponding
to the integer ` ∈ N.



We obtain a similar expansion for the other eigenvalue, starting
from Theorem 1.4 in [AFHL],

λ1(BR2 \ Kδ) = λ1(BR2) + CapBR2
(Kδ, u) + o

(
CapBR2

(Kδ, u)
)
.

In this formula, u is an eigenfunction associated with λ1(BR2) and
normalized in L2(BR2), and CapBR2

(Kδ, u) is defined in [AFHL].

Since u is radially symmetric, u(x+) = u(x−).
We can adapt their proof to give

CapBR2
(Kδ, u) = u(x±)2CapBR2

(Kδ) + o
(
CapBR2

(Kδ)
)
,

where CapBR2
(Kδ) is the classical (condenser) capacity of Kδ

relative to BR2 .



Since Kδ = K+
δ ∪ K−δ , and since K+

δ and K−δ concentrate to x+

and x− respectively, we have

CapBR2
(Kδ) ∼ CapBR2

(K+
δ ) + CapBR2

(K−δ )

as δ → 0. Finally, Proposition 1.6 in [AFHL] gives an asymptotic
expansion for CapBR2

(K±δ ).
Gathering these estimates, we find

λNND1 (D̂(2, ε)) = j2
0,1+

+
4

R2
2

(
J0(j0,1R1/R2)

J ′0(j0,1)

)2 1

|log(π/2− ε)|
+ o

(
1

|log(π/2− ε)|

)
.

(13)



Comparison between (NDD) and (DND) with D-cracks:
main proposition

For the two other cases we have weaker results but which are
enough for getting, using also the analyticity with respect to ε,

Proposition

There exists ε0 ∈ (0, π2 ) such that for ε ∈ [ε0,
π
2 ) we have

λNDD
1 (D̂(2, ε)) < λDND

1 (D̂(2, ε)) .

Moreover δ(ε) := λNDD
1 (D̂(2, ε))− λDND

1 (D̂(2, ε)) can at most
vanish in (0, π2 ) on a sequence of ε’s with no accumulation point
except possibly at 0.

A more accurate analysis as ε→ 0 would be useful for excluding
the possibility of a sequence of zeros of δ tending to 0. Numerics
strongly suggests that δ(ε) is negative in (0, π2 ). The presented
arguments are general and not related to N = 2.



Comparison between (NDD) and (DND) with D-cracks:
numerics

For ε = 0 and π
2 the theory says that the two spectra coincide.The

union of these two spectra corresponds to the odd eigenfunctions
on D(2, ε) which are antisymmetric by inversion.
For the ground state energies, the two curves do not cross and
have different curvature properties. This strongly suggests that
they are only equal for ε = 0 and π

2 . Some crossing (two points) is
observed for the curves corresponding to the second eigenvalues.
No crossing is observed for the curves corresponding to the third
eigenvalues.
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Figure: Case Neumann-Dirichlet and case Dirichlet-Neumann: three first
eigenvalues (R1 = 0.4356)
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