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Abstract. We propose a method to study the complex interactions (or microlocal tunneling) between 
electronic levels that do not intersect in the real domain. The method consists in using a special kind 
of Fourier-Bros-Iagolnitzer transformation, and in adjoining an exponential weight to the L2-type 
Hilbert spaces which are associated to a complex Lagrangian manifold and have been introduced by 
HELFFER and SJOSTRAND for the study of resonances. 

0. Introduction 

This paper is an attempt to understand better the complex interaction between wells in 
phase space, in rather general situations. A very simple example where the usual techniques 
don't work is the following one: 

Consider the matrix operator P on L2(lR") @ L2(lR") 

where R is a symmetric 2 x 2 matrix of differential operators of order less than two. This 
is typically the kind of operator one can expect to obtain (at least approximately) by the 
Feshbach reduction for a polyatomic molecule, in the Born-Oppenheimer approximation. 
(In this case, h > 0 will tend to zero as the masses of the nuclei tend to infinity: see e.g. 
[KMSW] and references there.) 

When h tends to O,, the principal part of P is 

diag(-h'A + Vl(x), -hzA + Vz(x)) 

V,(x) = -x, - 1 ,  
with 

In particular, if one wants to study the resonances of P near 0, one should in principle 
consider the two potential wells 

Vz(x) = xz. 

u1 = V;'((-Oo,O]) = lR"-'x[-l ,  +co), 

uz = V;'((-oO,O]) = (0). 

▷ 1980～ Tunneling estimates

• Agmon distance/estimates (in x-space).

▷ What is tunneling in phase space?

• Helffer-Sjöstrand : Harper operators

• tunneling estimates in momentum

space (Agmon estimates for

pseudodifferential operators)

Break through: A. Martinez: Estimates

on complex interactions in phase space

Math. Nachr. 167 (1994), 203–254

(Preprint 1992)

▷ Purely phase space formulation of

tunneling estimates/exponential decay estimates.



▷ When Nakamura was invited to Paris 13 (1992, 1993?), André Martinez kindly

explained me the main idea:

▷ FBI transform (Bargman transform, Gaussian wave (coherent state) expansion,

Gabor transform, . . . )

Tu(x , ξ) = cn

∫
e i(x−y)·ξ/h−|x−y |2/2hu(y)dy , cn = 2−n/2(πh)−3n/4,

for u ∈ L2(Rn). T is isometry from L2(Rn) into L2(Rn × Rn).

▷ Basic properties:

T [xu] = (x − hDξ)(Tu), T [hDxu] = hDx(Tu),

and hence T [p(x , hDx)u] = p(x − hDξ, hDx)(Tu).

(hDx − ξ − ihDξ)(Tu) = 0 (Cauchy-Riemann equation).

Hence we have ⟨Tu, (hDx − ξ − ihDξ)(Tu)⟩ = 0, and then

⟨Tu, (hDx − ξ)(Tu)⟩ = 0, ⟨Tu, hDξ(Tu)⟩ = 0.

i.e., hDx ∼ ξ, hDξ ∼ 0 as quadratic forms on Ran[T ]. Hence we have

⟨Tu,T [p(x , hDx)u]⟩ ∼ ⟨Tu, p(x , ξ)Tu⟩.



▷ Put an exponential weight eψ(x ,ξ)/h on Tu.

eψ/hT [p(x , hDx)u] = eψ/hp(x − hDξ, hDx)(Tu)

∼ p(x − hDξ − i∂ξψ, hDx + i∂xψ)e
ψ/h(Tu).

The Cauchy-Riemann equation becomes

(hDx − ξ + ∂ξψ − i(hDξ − ∂xψ))e
ψ/h(Tu) = 0.

This implies
hDx ∼ ξ + ∂ξψ, hDξ ∼ ∂xψ

as quadratic forms on Ran[eψ/hT ]. Combining them, we have

⟨eψ/hTu, eψ/hT [p(x , hDx)u]⟩ ∼ ⟨eψ/hTu, p(x − ∂̄ψ, ξ + i ∂̄ψ)eψ/hTu⟩,

where ∂̄ψ = ∂xψ + i∂ξψ.

▷ Martinez carried out this analysis for differential operators p(x , hDx) using the

Sjöstrand theory of analytic singularities.



▷ Nakamura found a way to prove it by

elementary pseudodifferential operator

calculus to show this for pseudodifferential

operators. (On Martinez’ method of phase

space tunneling, Rev. Math. Phys. 1995)

▷ Then Martinez wrote a textbook (2002)

on microlocal analysis / semiclassical

analysis and he used this method

to prove various theorems, including

propagation theorem of analytic

singularities, Kawai-Kashiwara theorem, . . . .



▷ Then we start collaboration based on this method:

• Martinez, A., Nakamura, S., Sordoni, V.: Phase space tunneling in multistate

scattering. J. Funct. Anal. 191 (2002), no. 2, 297–317.

• Martinez, A., Nakamura, S., Sordoni, V.: Analytic smoothing effect for the

Schrödinger equation with long-range perturbation. Comm. Pure Appl. Math. 59

(2006), no. 9, 1330–1351.

• Martinez, A., Nakamura, S., Sordoni, V.: Analytic singularities for long range

Schrödinger equations. C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16,

849–852.

• Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to

Schrödinger equations. Adv. Math. 222 (2009), no. 4, 1277–1307.

• Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to

Schrödinger equations II ― long range perturbations. Comm. Partial Differential

Equations 35 (2010), no. 12, 2279–2309.

▷ Still there are many questions to be solved, or understood, e.g.,

“Why do we need global analyticity?”



1 Schrödinger operators with long-range potentials

(1) Schrödinger operators on Rd , d ≥ 1:

H = −1

2
△+ V (x) on H = L2(Rd),

where V (x) is a real-valued bounded function. H is self-adjoint on H2(Rd).

Assumption A. Suppose V ∈ C∞(Rd ;R); there is µ > 0 and for any α ∈ Zd
+,∣∣∂αx V (x)

∣∣ ≤ Cα⟨x⟩−µ−|α|, x ∈ Rd .

We call V is short-range if µ > 1, and long-range if 0 < µ ≤ 1.

▷ If V is short-range, then it is well-known that the wave operators

W± = s-lim
t→±∞

e itHe−itH0 , H0 = −1

2
△,

exist and are complete: Ran[W±] = Hac(H). Namely, for any φ0 ∈ Hac(H),

e−itHφ0 ∼ e−itH0φ± as t → ±∞

where φ± = (W±)
∗φ0.



(2) Long-range scattering:

▷ If V is long-range, then it is also well-known that the wave operators do not

converge in general. The modified wave operators are defined by

W D
± = s-lim

t→±∞
e itHe−iϕ(t,Dx )

where ϕ(t, ξ) is a solution to Hamilton-Jacobi equation in the Fourier space, and they

are complete: Ran[W D
± ] = Hac(H). Namely, for any φ0 ∈ Hac(H),

e−itHφ0 ∼ e−iϕ(t,Dx )φ± as t → ±∞

where φ± = (W D
± )∗φ0. (Dollard, Hörmander, Saito, Isozaki, Kitada, Enss,

Kitada-Yajima, Yafaev, Derezinski-Gérard. . . ).

Remark 1. If 1/2 < µ ≤ 1, we can use Dollard-type modifier:

ϕD(t, ξ) =
t

2
|ξ|2 +

∫ t

0

V (sξ)ds, t ∈ R, ξ ∈ Rd , ξ ̸= 0,

to define the modified wave operators.



▷ There is another approach due to Isozaki and Kitada: We use suitable Fourier

integral operators:

J±u(x) = (2π)−d/2

∫
e iψ±(x ,ξ)û(ξ)dξ, x ∈ Rd , u ∈ S(Rd),

called the time-independent modifiers, where ψ±(x , ξ) on R2d are solutions to the

eikonal equation. Then the modified wave operators

W IK
± = s-lim

t→±∞
e itHJ±e

−itH0

exists and are complete.

Remark 2. If 1/2 < µ ≤ 1, we can use approximate solutions to the eikonal equation

(due to D. Yafaev):

ψD
±(x , ξ) = x · ξ +

∫ ±∞

0

(V (x + tξ)− V (tξ))dt.

Remark 3. With suitable constructions of ϕ and ψ±, it is known W D
± = W IK

± (see the

textbook by Dereziński-Gérard).



2 Scattering matrix

▷ In the following, we simply write the modified wave operators by W± = W D
± , or

W± = W IK
± .

▷ The scattering operator is S = W ∗
+W−, H → H, unitary, and by the definition,

we have the intertwining property: (formally), SH0 = W ∗
+HW− = H0S on D(H0).

Hence,
(FSF∗)|ξ|2 = |ξ|2(FSF∗) on L2(Rd

ξ ),

where F is the Fourier transform. If we decompose L2(Rd
ξ ) = FH as

L2(Rd
ξ ) ≃

∫ ⊕

(0,∞)

L2(Σλ,mλ)dλ, Σλ =
√
2λSd−1,mλ = dS/

√
2λ,

then the scattering operator is decomposed as

(FSF∗)φ(λ,ω) = (S(λ)φ(λ, ·))(ω)

for φ ∈
∫ ⊕

L2(Σλ,mλ)dλ, where S(λ), L2(Σλ,mλ) → L2(Σλ,mλ). S(λ) is unitary

for a.e. λ > 0, and called the scattering matrix.

▷ By scaling, we may consider S(λ) as an operator on L2(Sd−1, dS).



Notation: We consider operators and symbol classes on Σλ =
√
2λSd−1. We denote

a(y , η) ∈ Sℓρ,δ for a ∈ C∞(T ∗Σλ) (η ∈ Σλ, y ∈ T ∗
ηΣλ) if ∀α,β ∈ Zd

+, ∃Cαβ > 0 s.t.∣∣∂αy ∂βη a(y , η)∣∣ ≤ Cαβ⟨y⟩ℓ−ρ|α|+δ|β|, (η, y) ∈ T ∗Σλ,

in each local coordinate system.

Theorem 1. Suppose Assumption A with 0 < µ < 1, and let λ > 0. Then S(λ) has

the following Fourier integral operator representation:

S(λ)f (η) = (2π)−(d−1)

∫∫
e−iψ(y ,η)+iy ·ζΘ(y , η)a(y , η)f (ζ)dζdy

for f ∈ C∞(Σλ) in a local coordinate of Σλ, where ψ ∈ S1
1,0(Σλ), a ∈ S0

1,0(Σλ), and

Θ(y , η) =
∣∣det(∂y∂ηψ(y , η))∣∣1/2. Moreover, ψ(y , η)− y · η ∈ S1−µ

1,0 (Σλ) and

a(y , η)− 1 ∈ S−1
1,0 (Σλ).

Remark 4. For sort-range case, i.e., µ > 1, S(λ) is a pseudo-differential operator

[Nakamura 2016]. For the long-range case, S(λ) is not necessarily a pseudo-differential

operator, but still it has the pseudo-local property, i.e, Sing[S(λ)φ] ⊂ Sing[φ], which

follows from the claim ψ(y , η)− y · η ∈ S1−µ
1,0 with µ < 1. This also implies the

off-diagonal smoothness of the integral kernel [Isozaki-Kitada 1985].



Remark 5. The phase function ψ is the generating function of the (modified)

classical scattering map. Θ(y , η) is the corresponding volume factor, which makes the

operator asymptotically unitary. Thus we may consider that S(λ) is a natural

quantization of the classical scattering map.

Remark 6. For 1/2 < µ < 1, D. Yafaev [1998, CMP] proved closely related result with

ψD(y , η) = y ·η+(2λ)−1/2

∫ ∞

−∞
(V (y+tη)−V (tη))dt, η ∈ Sd−1, y ∈ η⊥ ≃ T ∗

η S
d−1.

Yafaev considered S(λ) as a pseudo-differential operator with a symbol in S0
1−µ,µ, and

used calculus in the symbol class. We construct ψ using exact solutions to an eikonal

equation, and we use the Fourier integral operator calculus. Our method also applies

to more general models.

Remark 7. For Schrödinger operators (with short-range perturbations) on scattering

manifolds, it is known that S(λ) is an FIO (Melrose-Zworski, Ito-N)

Remark 8. The theorem is proved for more general operators, i.e., H0 = p0(Dx), λ in

the non-critical values of p0(ξ), and V = V (x ,Dx) pseudodifferential operators (with

the long-range condition). The method also applies to discrete Schrödinger operators.



3 Critical decay case, and the spectrum of scattering matrix

▷ Here we consider the case µ = 1. Here we set

Ψ(y , η) =

∫ ∞

−∞
(V (y + tη)− V (tη))dt, η ∈ Sd−1, y ∈ η⊥ ≃ T ∗

η S
d−1.

We note that for any α,β ∈ Zd−1
+ , there is Cαβ > 0 s.t.∣∣∂αy ∂βηΨ(y , η)

∣∣ ≤ Cαβ⟨y⟩−|α|⟨log⟨y⟩⟩, (η, y) ∈ T ∗Sd−1.

Then we have slightly stronger results than the case µ < 1.

Theorem 2. Suppose Assumption A with µ = 1, and let Ψ(x , ξ) be given above.

Then S(λ) on L2(Sd−1) is a pseudo-differential operator on Sd−1. Let s(y , η) be the

symbol of the operator in a local coordinate, i.e.,

S(λ)f (η) = (2π)−(d−1)

∫∫
e−i(η−ζ)·y s(y , η)f (ζ)dζdy ,

for f ∈ C∞(Sd−1) supported in the local patch. The principal symbol of S(λ) is given

by exp(−i
√
2λΨ(y , η)), i.e., if we set s1(y , η) = s(y , η)− exp(−i

√
2λΨ(y , η)), then

s1 satisfies, for ∀α,β ∈ Zd−1
+ ,∣∣∂αy ∂βη s1(y , η)∣∣ ≤ Cαβ⟨y⟩−1−|α|⟨log⟨y⟩⟩1+|β|, η ∈ Sd−1, y ∈ η⊥ ≃ T ∗

η S
d−1.



▷ In the case µ = 1, we can use the pseudo-differential operator calculus extensively,

and we can determine spectrum in several cases.

Proposition 3 (Yafaev). Suppose Assumption A with µ = 1, and suppose V (x) is

rotation symmetric. Moreover, suppose there are c,R > 0 such that

|x · ∂xV (x)| ≥ c |x |−1, if |x | ≥ R.

Then, for λ > 0, the scattering matrix has dense point spectrum on

S1 = {z ∈ C| |z | = 1}.

▷ If the potential is not rotation symmetric, we have somewhat weaker result.

We write
x = r x̂ , r = |x |, x̂ = x/|x |, ∂r f (x) = x̂ · ∂x f (x),

∂⊥r f (x) = (E − x̂ ⊗ x̂)∂x f (x) = ∂x f (x)− ∂r f (x)x̂ .

Proposition 4. Suppose Assumption A with µ = 1, and suppose there are constants

c1, c2,R > 0 such that c1 > c2 and

|∂rV (x)| ≥ c1
|x |2

, |∂⊥r V (x)| ≤ c2
|x |2

, if |x | ≥ R .

Then, for λ > 0, σ(S(λ)) = S1, and S(λ) has no absolutely continuous spectrum.



Remark 9. We use perturbation theory (or scattering theory) to prove Proposition 4.

We cannot exclude the existence of singular continuous spectrum, since the singular

continuous spectrum is very unstable under weak perturbations, whereas the

absolutely continuous spectrum is stable.

▷ If the potential change sign, the scattering matrix may have absolutely continuous

spectrum.

Proposition 5. Suppose d = 2, and let

V (x) = a
x1
⟨x⟩2

, x = (x1, x2) ∈ R2.

with a ̸= 0. Then S(λ) has absolutely continuous spectrum on S1 \ {e±iaπ(2λ)−1/2},
except for possibly discrete eigenvalues. The eigenvalues may accumulate only at

{e±iaπ(2λ)−1/2}.

Remark 10. If |a|(2λ)−1/2 ≥ 1, i.e., |a| ≥
√
2λ, then σ(S(λ)) = S1. On the other

hand, if |a| <
√
2λ then σess(S(λ)) = {e iθ| |θ| ≤ |a|π(2λ)−1/2}.



4 Proof of Theorem 1, outline

4.1 Classical mechanics with space cut-off

▷ We choose χ ∈ C∞(R) such that χ(r) = 1 if r ≥ 2; χ(r) = 0 if r ≤ 1.

▷ We fix an energy interval I = [E0,E1] ⋐ (0,∞).

▷ For sufficiently large R > 0, we set

VR(x) = χ(|x |/R)V (x), x ∈ Rd ,

and then

p(x , ξ) =
1

2
|ξ|2 + VR(x), p0(ξ) =

1

2
|ξ|2.

We consider the classical mechanics with the Hamiltonian p(x , ξ). We write

(x(t), ξ(t)) = (x(x0, ξ0; t), ξ(x0, ξ0; t)) = exp tHp(x0, ξ0), (x0, ξ0) ∈ R2d .

▷ We may suppose |VR(x)| ≤ E0/2, and hence if p(x , ξ) = λ ∈ I then |ξ| ≥
√
E0.

Moreover, provided R is sufficiently large, d2

dt2 |x(t)|
2 ≥ c3 > 0, and the trajectories are

nontrapping.

▷ We can also show
∥∥∥∂ξ(t)∂ξ0

∥∥∥ = O(R−µ), and by choosing R large, we may assume

ξ0 7→ ξ(t) is diffeomorphic with the determinant close to 1, uniformly.



4.2 Solution to the Hamilton-Jacobi equation

▷ We consider the solution to

∂

∂t
ϕ(t, ξ) = p(∂ξϕ(t, ξ), ξ), ϕ(0, ξ) = 0,

with p0(ξ) ∈ I . By the above observations,

Λt : η 7→ ξ(0, η; t)

is diffeomorphic for all t ∈ R. We set

u(t, ξ) =

∫ t

0

{
p(x(0, η : s), ξ(0, η; s))− x(0, η; s) · ∂xVR(x(0, η; s))

}
ds.

Then by the characteristic curve method, we learn

ϕ(t, ξ) = u(t, Λ−1
t (ξ))

is the solution to the Hamilton-Jacobi equation.

▷ We can show
∂αξ (ϕ(t, ξ)− tp0(ξ)) = O(⟨t⟩1−µ), t ∈ R,

for any α ∈ Zd
+.



4.3 Classical wave map and the interaction picture

▷ We note
∂ξϕ(t, ξ) = x(0, ξ(0, η), t), where ξ(t, η) = ξ.

We may consider
t 7→ (∂ξϕ(t, ξ), ξ) = (tξ + O(⟨t⟩1−µ), ξ)

be the modified free motion, starting from x = 0 at t = 0. We subtract the

modified free motion from the Hamilton flow:

y(x0, ξ0; t) = x(x0, ξ0; t)− ∂ξϕ(t, ξ(x0, ξ0; t)).

▷ The classical (inverse) wave map is defined by the limit of this flow:

x±(x0, ξ0) = lim
t→±∞

y(x0, ξ0; t), ξ±(x0, ξ0) = lim
t→±∞

ξ(x0, ξ0; t).

▷ We denote these maps by wt and w±, respectively:

wt : (x0, ξ0) 7→ (y(t), ξ(t)), w± : (x0, ξ0) 7→ (x±, ξ±).

The convergence wt → w± (t → ±∞) is locally uniform, including the derivatives.



▷ We note the flow: t 7→ (y(t), ξ(t)) is generated by the Hamiltonian:

q(t, y , ξ) = p(y + ∂ξϕ(t, ξ), ξ)− p(∂ξϕ(t, ξ), ξ)

= VR(y + ∂ξϕ(t, ξ))− VR(∂ξϕ(t, ξ)).

▷ We solve a Hamilton-Jacobi equation to construct the generating function of wt :

∂

∂t
ψ(t, x0, ξ) = q(t, ∂ξψ(t, x0, ξ), ξ), ψ(0, x0, ξ) = x0 · ξ.

The solution can be constructed by the characteristic curve method, globally in time t

(as well as ϕ(t, ξ)). Then, as in the usual classical mechanics, ψ(t, x , ξ) is the

generating function of wt :

wt :

(
x

∂xψ(t, x , ξ)

)
7→

(
∂ξψ(t, x , ξ)

ξ

)
.

▷ We take limit t → ±∞, and we obtain generating functions of the wave maps w±:

w± :

(
x

∂xψ±(x , ξ)

)
7→

(
∂ξψ±(x , ξ)

ξ

)
, ψ±(x , ξ) = lim

t→±∞
ψ(t, x , ξ).

The corresponding energy conservation law is the eikonal equation:

p(x , ∂xψ±(x , ξ)) = p0(ξ).



4.4 Quantum long-range scattering

▷ Using the solution to the Hamilton-Jacobi equation, we can define modified wave

operators:
WD

±EI (H0) = s-lim
t→±∞

e itHe−iϕ(t,Dx )EI (H0).

on the energy interval I = [E0,E1] ⋐ (0,∞) with the modified free motion e−iϕ(t,Dx ).

▷ Similarly, using ψ±(x , ξ), we can define the Isozaki-Kitada modifiers by

J±u(x) = (2π)−d/2

∫
e iψ±(x ,ξ)χ±(x , ξ)û(ξ)dξ, û = Fu, u ∈ S(Rd),

with suitable cut-off χ±(x , ξ) in the phase space so that the definition make sense.

Then the modified wave operators with Isozaki-Kitada type is defined as

W IK
± EI (H0) = s-lim

t→±∞
e itHJ±e

−itH0EI (H0).

Remark 11. We note J± can be considered as a quantization of the classical wave

maps w−1
± . Even tough ψ± corresponds to the inverse wave maps, the stationary

phase points of J± corresponds to the wave maps w−1
± .



4.5 Improved Isozaki-Kitada modifiers

▷ The idea of the proof of the existence of Isozaki-Kitada modifier is that, by the

Cook-Kuroda method,

W IK
± − J± = i

∫ ±∞

0

e itHG±e
−itH0dt,

where
G± = HJ± − J±H0 = O(⟨x⟩−1−µ) in some sense.

▷ We replace J± with J̃±:

J̃±u(x) = (2π)−d/2

∫
e iψ±(x ,ξ)Θ±(x , ξ)a±(x , ξ)χ(x , ξ)û(ξ)dξ,

where
Θ±(x , ξ) = (det(∂x∂ξψ±))

1/2,

and suitable a± ∈ S0
1,0 with a± − 1 ∈ S−1

1,0 . Then the wave operators defined using J̃±
are the same, but we have improved estimates:

G̃± = HJ̃± − J̃±H0 = O(⟨x⟩−N), ∀N,

i.e., G̃± is rapidly decreasing in |x |. In the following, we replace J± by J̃±.



4.6 Scattering matrix and the proof of Theorem 1

▷ We use the stationary representation of the scattering matrix. We write

T (λ) : f ∈ L2,s(Rd) 7→ f̂ |Σλ
∈ L2(Σλ), λ > 0.

The scattering matrix has the representation:

S(λ) = −2πiT (λ)
(
J∗+G− − G∗

+(H − λ− i0)−1G−
)
T (λ)∗

(due to Isozaki-Kitada and Yafaev). The second term is a smoothing operator by the

micro-local resolvent estimate of Isozaki-Kitada, and the first term is a composition of

Fourier integral operators.

▷ We can compute (analogously to [Nakamura 2016, CPDE]) the first term and we

have the formula of Theorem 1. The argument is rather technical, and we omit the

detail.



5 Scattering matrix with discrete or singular spectrum

▷ Here we show the scattering matrix are often expected to have discrete spectrum.

▷ We suppose µ = 1 here. Then we may consider the scattering matrix is

approximated by pseudo-differential operator with the symbol

exp(−i
√
2λΨ(y , η)), Ψ(y , η) =

∫ ∞

−∞
(V (y + tη)− V (tη))dt,

where η ∈ Sd−1, y ∈ T ∗
η S

d−1 ≃ η⊥.

▷ In general, if the potential is rotation symmetric, then the scattering matrix is also

rotation symmetric, and hence it is a function of the Laplacian on Sd−1. Thus the

spectrum is always pure point.

▷ If V (x) satisfies the condition x · ∂xV (x) ≥ c |x |−1, |x | ≫ 0, then we use the

representation:

Ψ(y , η) =

∫ 1

0

∫ ∞

−∞
y · (∂xV )(sy + tη)dtds (*)

to obtain c1⟨log⟨y⟩⟩ ≤ Ψ(y , η) ≤ c2⟨log⟨y⟩⟩ with 0 < c1 < c2, |y | ≫ 0.

By Weyl’s theorem on the essential spectrum, we have σ(S(λ)) = S1.



▷ If V is not necessarily rotation symmetric, but satisfies the conditions:

|∂rV (x)| ≥ c1
|x |2

, |∂⊥r V (x)| ≤ c2
|x |2

, if |x | ≥ R .

with c1 > c2 > 0, then we still have

c ′1⟨log⟨y⟩⟩ ≤ |Ψ(y , η)| ≤ c ′2⟨log⟨y⟩⟩ with 0 < c ′1 < c ′2, |y | ≫ 0.

Hence we have σ(S(λ)) = S1.

▷ We can show that there is Φ(y , η) such that Φ−Ψ ∈ S−1+δ
1,0 (Σλ) with any δ > 0

such that
S(λ)− e−i

√
2λΦ(−Dη ,η) ∈ Op(S−N

1,0 (Σλ)), ∀N.

On the other hand, Φ(−Dη, η) has compact resolvent, and hence has discrete

spectrum. Thus by the trace-class scattering theory (the Birman-Kuroda theorem), we

learn
σac(S(λ)) = σac(e

−i
√
2λΦ(−Dη ,η)) = ∅.

Remark 12. For the moment, it is not known how to show the absence of singular

continuous spectrum.

Remark 13. Probably similar argument can be carried out for 0 < µ < 1, though it

would be technically more complicated.



6 Scattering matrix with absolutely continuous spectrum

▷ Here we suppose d = 2, µ = 1. We set

V (x) = a
x1
⟨x⟩2

, x = (x1, x2) ∈ R2.

We use the coordinate (θ,ω) ∈ (R/(2πZ))× R of T ∗S1 so that

η = (cos θ, sin θ), y = (−ω sin θ,ω cos θ).

▷ Then by direct computations, we can compute Ψ(y , η) explicitly using (*):

Ψ(θ,ω) = −aπ sin θ(ω/⟨ω⟩).

▷ We set L = Op(ℓ), ℓ(θ,ω) = sgn(a) cos θ⟨ω⟩, Op(·) denotes the Weyl quantization.

Let J ⊂ S1 is an interval such that J ∩ {e±iaπ
√
2λ} = ∅. Then there is c > 0 and a

compact operator K such that the Mourre inequality holds:

EJ(S(λ))S(λ)
∗[L,S(λ)]EJ(S(λ)) ≥ cEJ(S(λ)) + K .

Thus we can apply the Mourre theory for unitary operators (e.g., [Fernandez, Richard,

Tieda de Aldecoa 2013, JST]), we learn the claim of Proposition 5, i.e., the spectrum

is absolutely continuous except for possibly discrete point spectrum.



▷ The key of the above argument is the Hamilton flow generated by

Ψ(θ,ω) = −aπ sin θ(ω/⟨ω⟩) on T ∗S1. We note

{Ψ(θ,ω), ⟨ω⟩2} = −aπ cos θ(ω2/⟨ω⟩) = −aπ cos θ⟨ω⟩+ O(⟨ω⟩−1),

and

−{Ψ(θ,ω), sgn(a) cos θ⟨ω⟩} = |a|π
(
sin2 θ

⟨ω⟩2
+ cos2 θ

ω2

⟨ω⟩2

)
≥ |a|π cos2 θ ω2

⟨ω⟩2
.

These imply we may consider ℓ(θ,ω) = sgn(a) cos θ⟨ω⟩ as an escaping function of the

Hamilton flow generated by Ψ(θ,ω). From these observation, the Mourre estimates

follows naturally.

Remark 14. There are other cases when we can compute Ψ(y , η) (almost) explicitly,

but for the moment, we do not have good general formulation.

Remark 15. In general Ψ(θ,ω) is not bounded (even if µ = 1), and then we cannot

use the Mourre theory for unitary operators directly. We need different argument to

determine the spectral properties of S(λ). One possibility may be construct Enss-type

scattering theory for the pair of unitary operators S(λ) and e iOp(Ψ).
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