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Introduction

This is a joint work with :
Clotilde Fermanian Kammerer (Univ. de Créteil). &
Caroline Lasser (Tech. Univ. München)

Schedule of the talk.

1 Propagation of wave packets in semi-classical analysis (Hagedorn
1980 & Combescure-R. 1997).

2 Herman-Kluk propagators. From quantum chemistry (Heller 1981,
Herman-Kluk 1984, Kay 1994 & 2006) to mathematics (Rousse-Swart
2009, R. 2010, Lasser-Sattleger 2017).

3 Extension to systems of equations with constant multiplicity
eigenvalues.

4 Extension to systems with crossing eigenvalues.
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Propagation of wave packets
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Wave packets

Let z = (q, p) ∈ R2d , a ∈ S(Rd), ‖a‖L2(Rd ) = 1, ε� 1.

WPε
za(x) = ε−

d
4 a

(
x − q√

ε

)
e

i
ε
p·(x−q)

Examples :

Gaussian wave packets: Let Γ a complex symmetric matrix in the
positive half Siegel space,

a(x) = cΓe
iΓx ·x =: gΓ

0 (x).

Hagedorn’s wave packets:

a(x) = 2−|`|/2(`!)−1/2π−d/4[detA]−1/2H`(A, |A|−1x) e−
1
2
x ·(BA−1x)

for ` ∈ Nd and H` a Hermite polynomial and A, B adequate matrices.

Notations

gΓ,ε
z =WPε

zg
Γ
0 , g ε

z = g iId,ε
z , gΓ

z = gΓ,1
z , gz = g1

z .

f ∈ Σk
ε means (−ε24x + |x |2)k/2 ∈ L2(Rd).
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Propagation of wave packets

iε∂tψ
ε = Ĥ(t)ψε, ψε|t=t0

= ψε0 ∈ L2(Rd ,CN)

H is of subquadratic growth

∀α ∈ N2d , |α| ≥ 2, ∃Cα > 0, sup
(t,z)∈R×R2d

‖∂αz H(t, z)‖CN,N ≤ Cα.

Ĥ(t) is the ε-pseudodifferential operator of symbol H(t): if f ∈ S(Rd ,CN),

Ĥ(t)f (x) := (2πε)−d
∫ ∫

Rd×Rd

e
i
ε ξ·(x−y)H

(
t,
x + y

2
, ξ

)
f (y)dy dξ.

Examples :

1 Schrödinger Hamiltonian (Hagedorn): HS(t, x , ξ) = |ξ|2
2 1CN + V (t, x)

2 Models arising from solid state physics (Watson & Weinstein):
HA(x , ξ) = A(ξ) + Vext(t, x)1C2
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Scalar equations : N = 1, H = h scalar

Theorem (Hagedorn, Combescure & R.)

If ψε0 =WPεz0
a, then in Σk

ε(Rd) (for any k ∈ N)

ψε(t) = e
i
εS(t,t0,z0)WPεz(t)

∑
j≥0

εj/2ϕj(t, x)

+ O(ε∞).

z(t) is the classical trajectory associated with h:

z(t) = Φt,t0

h (z0) = (q(t), p(t)).

S(t, t0, z0) is the classical action associated with z(t):

Ṡ(t, t0, z0) = p(t) · q̇(t)− h(t, z(t)), S(t0, t0, z0) = 0.

The profiles ϕj(t) express in terms of the propagator M[F (t, t0, z0)]
associated with the operator opw1 (Hesszh(t, z(t))z · z):

ϕ0(t) =M[F (t, t0, z0)]a, ϕj(t) =M[F (t, t0, z0)] bj(t, t0, z0)a.
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Scalar equations – N = 1, H = h scalar

F (t, t0, z0) := ∂zΦt,t0

h (z0) =

(
A(t, t0, z0) B(t, t0, z0)
C (t, t0, z0) D(t, t0, z0)

)
,

bj(t, t0, z0) are polynomials in (x ,Dx) of degree ≤ 3j .

Example: If a = gΓ0
0 then

ϕ(t, x) = g
Γ(t,t0,z0)
0 (x)

with

Γ(t, t0, z0) = (C (t, t0, z0) + D(t, t0, z0)Γ0)(A(t, t0, z0) + B(t, t0, z0)Γ0)−1
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Herman-Kluk propagators
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Scalar equations : Hermann Kluk propagator

The Bargmann formula

ψ(x) = (2πε)−d
∫
z∈R2d

〈gεz , ψ〉gεz (x)dz , ψ ∈ L2(Rd)

Theorem (Kay 2006, Rousse & Swart 2009, R.2010)

ψε(t) = (2πε)−d
∫
R2d

〈gεz , ψε0〉u(t, t0, z)e
i
εS(t,t0,z)gε

Φ
t,t0
h (z)

dz + O(ε),

in L2(Rd), with the Herman–Kluk prefactor

u(t, t0, z) = 2−d/2 det1/2 (A(t, t0, z) + D(t, t0, z) + i(C (t, t0, z)− B(t, t0, z))) .

=⇒ Numerical solvers of the Schrödinger equation [Lasser & Sattleger 2017]

1 Sampling of the data ψε0(x) ∼ (2πε)−d
∑

1≤j≤N rε0 (zj)g
ε
zj

2 Approximated formula for ψε(t) by solving ODEs

ψε(t, x) ∼ (2πε)−d
∑

1≤j≤N

rε0 (zj)e
i
εS1(t,t0,zj )u1(t, t0, zj)g

ε
Φ

t,t0
zj

.
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Scalar equations : Hermann Kluk propagator

Sketch of Proof

ψε0(x) = (2πε)−d
∫
z∈R2d

〈gεz , ψε0〉gεz (x)dz

=⇒ ψε(t, x) = (2πε)−d
∫
z∈R2d

e
i
εS(t,0,z)〈gεz , ψ〉

(
g

Γ(t,0,z),ε

Φt,0
h (z)

(x) +
√
εϕε1(t, x , z)

)
dz .

We use two lemma

1 Treat the remainder in O(
√
ε) in order to obtain O(ε), using the special

shape of source term in the equation of ϕ1(t).

2 Turn the width Γ(t, t0, z) of the Gaussian into the prefactor u(t, t0, z) by a
deformation argument drawing a path form Γ0 = iId to Γ1 = Γ(t, 0, z).

Remark. We could define HK-prefactor connecting Γ1 = Γ(t, ts0, z) to any Γ0

instead of iId.
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What about systems ?
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The constant multiplicity case

Example The Dirac operator

Let H ∈ C∞(R× R2d ,CN,N), subquadratic matrix symbol with two
eigenvalues λ±(t,X ) with multiplicity m± (m− + m+ = N) s.t ∃δ > 0,

|λ+(t,X )− λ−(t,X )| ≥ δ, ∀t ∈ R,X ∈ R2d .

The Schrödinger equation

iε∂tψ
ε = Ĥ(t)ψε, ψε

|t=t0
= ψε

0 ∈ L2(Rd ,CN)

can be decoupled mod O(ε∞) and we are reduced to scalar independent
Schrödinger equations (at least for the leading order in ε).
Notations. Π±(t,X ) the spectral projector for the eigenvalue λ±(t,X )
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Theorem ( semi-classical decoupling Emmrich-Weinstein 1996)

There exist unique self-adjoint formal projections Π̂±,ε(t), smooth in t,
such that Π̂±0 (t,X ) = Opεw (Π±(t)) and

(iε∂t − H(t))Π̂±,ε(t) = Π̂±,ε(t)(iε∂t − H(t)).

There exist formal matricial symbols H±,ε(t) such that
H±0 (t,X ) = λ±(t,X )1m± and

Π±,ε(t)(iε∂t − Ĥ(t)) = Π̂±,ε(t)(iε∂t − Ĥ±(t)).

Moreover, the subprincipal term H+
1 (t) of H+(t) is given by the formula

H+
1 (t) = − 1

2i
(λ+(t)− λ−(t)){Π+(t),Π+(t)}

+i(∂tΠ+(t)− {Π+(t), λ+})(Π+(t)− Π−(t)). (1)
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Let U(t, t0), U±(t, t0) the unitary propagators for Ĥ(t), Ĥ±(t) (Exist for
sub-quadratic Hamiltonians).

Corollary

U(t, t0) = Π̂+,ε(t)U+(t, t0)Π̂+,ε(t0) + Π̂−,ε(t)U−(t, t0)Π̂−,ε(t0) + O(ε∞)

Remark The sub-principal terms H±1 in H±(t) mix the states in the modes
+ and −. This is clear by computing time evolution of coherent states.

Let R±(t, t0) the matrix satisfying ∂tR±(t, t0) + iH±1 (t, z±(t)) = 0,
R±(t0, t0) = 1CN .
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Corollary (Bily Ph.D thesis 2001)

a := g is a Gaussian.
For every (z0, v0) ∈ R2d × CN , we have ψε(t) ≈ ψ+,ε(t) + ψ−,ε(t) where

ψ±,ε(t) = e
i
ε
S±(t,t0,z0)WPε

z±(t)

∑
j≥0

εj/2ϕ±j (t, x)

+ O(ε∞).

ϕ±j (t) = R±(t, t0)M[F±(t, t0, z0)] b±j (t, t0, z0, v0)g .

b±j (t), polynomials of degree ≤ 3j , with coefficients in CN .

b±0 (t) = π±(t, z)R±(t, t0)π±(t0, z)v .

For j ≥ 2 polarizations + and − are no more separated in b±j (t).

Explicite computations are possible for b±2 (t)!
To follow the phase of states: adiabatic decoupling for systems with a
(small) spectral gap.
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adiabatic decoupling

Let h(t, z) be an eigenvalue of H(t, z) and Π(t, z) the associated eigenprojector :

H(t, z)Π(t, z) = Π(t, z)H(t, z) = h(t, z)Π(t, z)

Gap assumption: ∃δ > 0, ∀(t, z), dist (h(t, z), σ(H(t, z)) \ {h(t, z)}) > δ.

Theorem (Kato revisited)

If ψε0 = ~̂V0v
ε
0 with vε0 ∈ L2(Rd ,C) and Π(t0, z) ~V0(z) = ~V0(z), then in L2(Rd ,CN)

ψε(t) = ~̂V (t)vε(t) + O(ε)

where Π(t, z) ~V (t, z) = ~V (t, z) and vε(t) solves

iε∂tv
ε = ĥ(t)vε vε|t=t0

= vε0 .

Besides, if (ψε0)ε>0 is unif. bounded in Σk
ε (k ∈ N), then convergence in Σk

ε .

=⇒ Who is ~V (t, z) ?
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Gapped systems - parallel transport

We set

Ω(t, z) = Π(t, z){Π,H}(t, z)Π(t, z),

K (t, z) = (IdCN − Π(t, z)) (∂tΠ(t, z) + {h,Π}(t, z)) Π(t, z).

Then,

Ω(t, z) is a skew-symmetric matrix,

K (t, z) and Ω(t, z) are smooth,.

Proposition (Hagedorn 1994, FLR 2019)

There exists a smooth vector-valued function ~V (t, z) such that

Π(t, z) ~V (t, z) = ~V (t, z), | ~V (t, z)| = 1,

∂t ~V (t, z) + {h, ~V }(t, z) = Ω(t, z) ~V (t, z) + K (t, z) ~V (t, z), ~V (0, z) = ~V0(z).

The result holds independently of the existence of the gap if Π and h are smooth.
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Gapped systems - Hermann Kluk propagator

Adiabatic decoupling: If ψε0 = ~̂V0v
ε
0 + O(ε) with Π(0, z) ~V0(z) = ~V0(z), then

ψε(t) = ~̂V (t)vε(t) + O(ε)

where vε(t) solves iε∂tv
ε = ĥ(t)vε vε|t=t0

= vε0 .

=⇒ Herman-Kluk representation of the propagator of a gapped system

Corollary (FLR 2019)

ψε(t) = (2πε)−d
∫
R2d

〈gεz , vε0 〉 u(t, t0, z) ~V (t,Φt,t0

h (z)) e
i
εS(t,t0,z) gε

Φt,0
h (z)

dz +O(ε).

A vector-valued Herman-Kluk prefactor:

~U(t, t0, z) = u(t, t0, z) ~V (t,Φt,t0

h (z)).

Approximation in finite time and in L2(Rd).
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What about systems with crossings ?

H(t, z) = v(t, z)Id +

(
p1(t, z) p2(t, z) + ip3(t, z)

p2(t, z)− ip3(t, z) −p1(t, z)

)
. (2)

v ∈ R and p(t, z) = (p1(t, z), p2(t, z), p3(t, z)) ∈ R3 smooth functions.
The eigenvalues of H(t, z), ordered by size, are the real numbers

v(t, z)− |p(t, z)| = λ−(t, z) ≤ λ+(t, z) = v(t, z) + |p(t, z)|.

The functions (t, z) 7→ λ±(z) are smooth in open sets where p(t, z) 6= 0R3 .
When Υ := {(t, z) ∈ R×R2d , p(t, z) = 0R3} is an hypersurface we have a
codimension 1 crossing (see Hagedorn’s classification).
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Assume that there exists a smooth function (t, z) 7→ f (t, z) such that
df 6= 0 on Υ. Then

pj(t, z) = f (t, z)uj(t, z), j ∈ {1, 2, 3}

and we assume further that u1(t, z)2 + u2(t, z)2 + u3(t, z)2 = 1 on Υ.
Then, the functions

hj(z) = v(z)− (−1)j f (z), j ∈ {1, 2}, v =
1

2
trH (3)

correspond to a renumbering of the eigenvalues on both sides of the
hypersurface Υ. This is a specific feature of codimension 1 crossing: the
existence of smooth eigenvalues after renumbering.
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Systems with codimension 1 crossings – Notations

N = 2, H(t, z) = h1(t, z)Π1(t, z) + h2(t, z)Π2(t, z).

The functions h1, h2, Π1 and Π2 are smooth and

h1 = v + f , h2 = v − f , v =
1

2
TrH, f is the gap.

Classical quantities associated with hj j ∈ {1, 2}

Φt,t0

j (z), Sj(t, t0, z), Fj(t, t0, z), Γj(t, t0, z), uj(t, t0, z), ~Uj(t, t0, z), . . .

Two families of eigenvectors obtained by parallel transport:
with ~Vj(t0, z) such that Πj(t0, z) ~Vj(z) = ~Vj(z), j ∈ {1, 2} one associates

(t, z) 7→ ~Vj(t, t0, z), ~Vj(t0, t0, z) = ~Vj(z)
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Systems with codimension 1 crossings – Geometry

Generic codimension 1 crossing:

∂t f + {v , f } 6= 0.

=⇒ The trajectories are transverse to the crossing hypersurface

Υ = {f (t, z) = 0}.

If z is such that Φt,t0

1 (z) crosses Υ we denote by t\(z) the crossing time

Φ
t\(z),t0

1 (z) = z\(z) ∈ Υ.

The map z 7→ t\(z) ∈ R is well-defined and smooth.

We associate with z ∈ R2d

S\(z) = S1(t\, t0, z), α\(z) =
(

({v ,Π2}+ ∂tΠ2) ~V1 · ~V⊥1
)

(t\, z\).

With ~V1(z) = Π1(t0, z) ~V1(z)), we associate ~V1(t, t0, z) and ~V2(t, t\, z) with

~V2(t\, t\, z) = ~V1(t\, t0, z)⊥.
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Codimension 1 crossings – Propagation of wave packets

We assume ψε0 = ~̂V1v
ε
0 , vε0 =WPεz0

(a)

Theorem (Hagedorn 94, Watson & Weinstein 18, FLR 19-20?)

ψε(t) = ~̂V 1(t)vε1 (t) +
√
ε 1t>t\

~̂V 2(t)vε2 (t) + O(ε5/8)

in Σk
ε (for any k ∈ N) where

vε1 (t) solves iε∂tv
ε
1 = ĥ1v

ε
1 , vε1 (0) =WPεz0

(a).

vε2 (t) solves iε∂tv
ε
2 = ĥ2v

ε
2 , vε2 (t\) = α\ eiS

\/εWPεz\(T \ϕ1(t\)),

where α\, S\ are classical quantities associated with the crossing point z],
ϕ1(t\) is the profile of vε1 (t\),
and T ] is a transfer operator mapping S(Rd) into itself and preserving Gaussians.

Gaussian Wave packets: If a = gΓ0
0 is Gaussian then ϕ1(t\) = g

Γ1(t\,t,z0)
0 ,

T \gΓ1(t\,t,z0)
0 = gΓ\

0 .
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Systems with codimension 1 crossings – Gaussian data

Sketch of proof. In the case H = H(z) (no time dependence)

wε
1 (t) = Π̂1ψ

ε(t)− ~̂V1(t)vε1 (t), wε
2 (t) = Π̂2ψ

ε(t), wε = (wε
1 ,w

ε
2 ).

Then wε
1 (0) = wε

2 (0) = 0 and for s, t ∈ R, in L2(Rd),

wε
1 (t) = wε

1 (s) +

∫ t

s

Q1(σ)wε(σ)dσ + O(ε),

wε
2 (t) = wε

2 (s) +

∫ t

s

Q2(σ)wε(σ)dσ + T̃ ε(t, s)vε0 + O(ε)

where

T̃ ε(t, s) =

∫ t

s

e−
i
ε (t−σ)ĥ2 α̂ ~V2(σ)e−

i
εσĥ1dσ

the operators Q1 and Q2 are bounded.

1 From 0 to t\ − δ, one can use adiabaticity and get T ε(t, t0) = O(εδ−1).

2 From t\ − δ to t\ + δ, analysis of the operator T ε(t\ + δ, t\ − δ) for small δ.
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Systems with codimension 1 crossings – Gaussian data

Sketch of proof. In the case H = H(z) (no time dependence)

wε
1 (t) = Π̂1ψ

ε(t)− ~̂V1(t)vε1 (t), wε
2 (t) = Π̂2ψ

ε(t), wε = (wε
1 ,w

ε
2 ).

Then wε
1 (0) = wε

2 (0) = 0 and for s, t ∈ R, in L2(Rd),

wε
1 (t) = wε

1 (s) +

∫ t

s

Q1(σ)wε(σ)dσ + O(ε),

wε
2 (t) = wε

2 (s) +

∫ t

s

Q2(σ)wε(σ)dσ + T̃ ε(t, s)vε0 + O(ε)

where

T̃ ε(t, s) =

∫ t

s

e−
i
ε (t−σ)ĥ2 α̂ ~V2(σ)e−

i
εσĥ1dσ

the operators Q1 and Q2 are bounded.

1 From 0 to t\ − δ, one can use adiabaticity and get T ε(t, t0) = O(εδ−1).

2 From t\ − δ to t\ + δ, analysis of the operator T ε(t\ + δ, t\ − δ) for small δ.
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Codimension 1 crossings – The transfer operator

Writing T̃ ε(t\ + δ, t\ − δ)vε0 as an operator on vε1 (t\).

T̃ ε(t\ + δ, t\ − δ)vε0 = e−
i
ε δĥ2

(∫ δ

−δ
e

i
εσĥ2 α̂ ~V2(t\ + σ)e−

i
εσĥ1dσ

)
vε1 (t\)

Egorov theorem and approximation of the trajectories

T̃ ε(t\ + δ, t\ − δ)vε0 = e−
i
ε δĥ2 α̂ ~V2(t\)

(∫ δ

−δ
e

i
εσĥ2e−

i
εσĥ1dσ

)
vε1 (t\) + O(δ2)

Wave packet approximation

T̃ ε(t\ + δ, t\ − δ)vε0 = e−
i
ε δĥ2 eiS

\/εα̂ ~V2(t\)T εδ ϕ1(t\) + O(ε) + O(δ2).
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Codimension 1 crossings – The transfer operator

T εδ =

∫ +δ

−δ
e

i
ε

(
S1(t\+σ,t\,z\)+S2(t\,t\+σ,Φt\+σ,t\

1 (z\))

)
WPεζ(σ)dσ.

ζ(σ) = Φt\,t\+σ
2 ◦ Φt\+σ,t\

1 (z\).

After Taylor expansions, one can find λ\, β\ = (β\q, β
\
p) such that

T εδ =

∫ +∞

−∞
eiλ

\s2

eisβ
\
p ·yϕ(y − sβ\q)ds + O(ε) + O(δ2) + O(ε−1/2δ3).

In particular, if µ\ := λ\ +
β\p ·β

\
q

2 6= 0, then T \ =
√

2π (
√
µ\)−1e

i

4µ\
(β\p ·y−β

\
q ·Dy )2

.

If H = HS , as in [Hagedorn 1994], βq = 0.

If H = HA as in [Watson-Weinstein 2019], βp = 0.
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Codimension 1 crossings – Herman-Kluk propagator

Theorem

Assume ψε0 = ~̂V 1v
ε
0 . then

ψε(t, x) = (2πε)−d
∫
R2d

e
i
εS1(t,0,z) ~Uε1 (t, z)〈gεz , vε0 〉gεΦt,0

1 (z)
(x)dz

+
√
ε (2πε)−d

∫
R2d

1[t\(z)<t]α
\(z)e

i
εS

\(z)e
i
εS2(t,t\,z\) ~Uε2 (t, z)

×〈gεz , vε0 〉gεΦt,t\

2 (z\)
(x)dz + O(ε5/8)

with vector-valued Herman-Kluk prefactors

~Uε1 (t, z) = ~V1

(
t, t0,Φ

t,t0

1 (z)
)
u1(t, t0, z),

~Uε2 (t, z) = ~V2

(
t, t\(z),Φ

t,t\(z)
2 (z\(z))

)
u2(t, t\(z), z).

Wave packets and codimension one crossings 29 / 32



Codimension 1 crossings – Proofs

Assume ∂t f + {v , f } > 0

Smoothen the cut off

1[t\(z)<t] = 1Ω(t), Ω(t) = {f (z) < 0, f (Φt,0
1 (z)) > 0}.

=⇒ A new parameter δ > 0 and a prefactor of the form χ(δ−1(t − t\(z)).

Identify a canonical transform in the map (broken flow)

z 7→ Φ
t,t\(z)
2 ◦ Φ

t\(z),t0

1 (z).

Revisit the two lemmas of the scalar proof for this new canonical transform
and compute the rest in terms of the derivatives of the prefactor in order to
control the lost in δ.
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Perspectives

The Herman-Kluk approximation fits to a numerical realization
=⇒ after a phasis of implementation of the initial data, one is reduced to
propagate classical quantities along the trajectories.

The Herman-Kluk approximation of the propagator that we propose for
codimension 1 crossing contains the generation of new trajectories when one
hits the crossing hypersurface, which is reminiscent from surface hoppings
algorithms of quantum chemistry.

The next step would be to extend this approach to codimension 2 crossings
with conical intersections.
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Happy birthday André !!!
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