Propagation of Wave Packets,
 Herman-Kluk Propagators and codimension one crossings

Didier Robert

Laboratoire Jean Leray, Université de Nantes

Conference in honor of André Martinez

Paris, IHP, June 13, 2019,

Introduction

This is a joint work with :
Clotilde Fermanian Kammerer (Univ. de Créteil). \&
Caroline Lasser (Tech. Univ. München)
Schedule of the talk.
(1) Propagation of wave packets in semi-classical analysis (Hagedorn 1980 \& Combescure-R. 1997).
(2) Herman-Kluk propagators. From quantum chemistry (Heller 1981, Herman-Kluk 1984, Kay 1994 \& 2006) to mathematics (Rousse-Swart 2009, R. 2010, Lasser-Sattleger 2017).
(3) Extension to systems of equations with constant multiplicity eigenvalues.
(9) Extension to systems with crossing eigenvalues.

Non-Adiabatic Crossing of Energy Levels.

By Clarence Zener, National Research Fellow of U.S.A.
(Communicated by R. H. Fowler, F.R.S.-Received July 19, 1932.)

1. Introduction.

The crossing of energy levels has been a matter of considerable discussion.* The essential features may be illustrated in the crossing of a polar and homopolar state of a molecule.

Fra. 1.-Crossing of polar and homopolar states.
Let $\psi_{1}(x / \mathrm{R}), \psi_{2}(x / \mathrm{R})$ be two electronic eigenfunctions of a molecule with stationary nuclei. Let these eigenfunctions have the property that for $\mathbf{R}>\mathrm{R}_{0}, \psi_{1}$ has polar characteristics, ψ_{2} homopolar ; while at $\mathrm{R}<\mathrm{R}_{0}, \psi_{2}$ has polar characteristics, ψ_{1} homopolar. In the region $R=R_{0}$ these two eigenfunctions may be said to exchange their characteristics.

The adiabatic theorem tells us that if the molecule is initially in state ψ_{2}, and R changes infinitely slowly from $R \geqslant R_{0}$ to $R<R_{0}$, then the molecule will remain in state ψ_{2}. However, if R changes with a finite velocity, the final state $\psi(x / \mathrm{R})$ will be a linear combination

$$
\begin{equation*}
\psi(x / \mathrm{R})=\mathrm{A}_{1}(\mathrm{R}) \psi_{1}(x / \mathrm{R})+\mathrm{A}_{2}(\mathrm{R}) \psi_{2}(x / \mathrm{R}) \tag{1}
\end{equation*}
$$

Neumann and Wigner (loc. cit.) have found the conditions for which

Propagation of wave packets

Wave packets

Let $z=(q, p) \in \mathbb{R}^{2 d}, a \in \mathcal{S}\left(\mathbb{R}^{d}\right),\|a\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1, \varepsilon \ll 1$.

$$
\mathcal{W} P_{z}^{\varepsilon} a(x)=\varepsilon^{-\frac{d}{4}} a\left(\frac{x-q}{\sqrt{\varepsilon}}\right) \mathrm{e}^{\frac{i}{\varepsilon} p \cdot(x-q)}
$$

Examples:

- Gaussian wave packets: Let Γ a complex symmetric matrix in the positive half Siegel space,

$$
a(x)=c_{\Gamma} \mathrm{e}^{i \Gamma x \cdot x}=: g_{0}^{\Gamma}(x)
$$

- Hagedorn's wave packets:

$$
a(x)=2^{-|\ell| / 2}(\ell!)^{-1 / 2} \pi^{-d / 4}[\operatorname{det} A]^{-1 / 2} \mathcal{H}_{\ell}\left(A,|A|^{-1} x\right) \mathrm{e}^{-\frac{1}{2} x \cdot\left(B A^{-1} x\right)}
$$

for $\ell \in \mathbb{N}^{d}$ and \mathcal{H}_{ℓ} a Hermite polynomial and A, B adequate matrices.

Notations

Wave packets

Let $z=(q, p) \in \mathbb{R}^{2 d}, a \in \mathcal{S}\left(\mathbb{R}^{d}\right),\|a\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1, \varepsilon \ll 1$.

$$
\mathcal{W} P_{z}^{\varepsilon} a(x)=\varepsilon^{-\frac{d}{4}} a\left(\frac{x-q}{\sqrt{\varepsilon}}\right) \mathrm{e}^{\frac{i}{\varepsilon} p \cdot(x-q)}
$$

Examples :

- Gaussian wave packets: Let Γ a complex symmetric matrix in the positive half Siegel space,

$$
a(x)=c_{\Gamma} \mathrm{e}^{i \Gamma x \cdot x}=: g_{0}^{\Gamma}(x)
$$

- Hagedorn's wave packets:

$$
a(x)=2^{-|\ell| / 2}(\ell!)^{-1 / 2} \pi^{-d / 4}[\operatorname{det} A]^{-1 / 2} \mathcal{H}_{\ell}\left(A,|A|^{-1} x\right) \mathrm{e}^{-\frac{1}{2} x \cdot\left(B A^{-1} x\right)}
$$

for $\ell \in \mathbb{N}^{d}$ and \mathcal{H}_{ℓ} a Hermite polynomial and A, B adequate matrices.
Notations

- $g_{z}^{\Gamma, \varepsilon}=\mathcal{W} P_{z}^{\varepsilon} g_{0}^{\Gamma}, g_{z}^{\varepsilon}=g_{z}^{i \mathrm{Id}, \varepsilon}, \quad g_{z}^{\Gamma}=g_{z}^{\Gamma, 1}, \quad g_{z}=g_{z}^{1}$.
- $f \in \sum_{\varepsilon}^{k}$ means $\left(-\varepsilon^{2} \triangle_{x}+|x|^{2}\right)^{k / 2} \in L^{2}\left(\mathbb{R}^{d}\right)$.

Propagation of wave packets

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}=\widehat{H}(t) \psi^{\varepsilon}, \psi_{l t=t_{0}}^{\varepsilon}=\psi_{0}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)
$$

- H is of subquadratic growth

$$
\forall \alpha \in \mathbb{N}^{2 d}, \quad|\alpha| \geq 2, \quad \exists C_{\alpha}>0, \quad \sup _{(t, z) \in \mathbb{R} \times \mathbb{R}^{2 d}}\left\|\partial_{z}^{\alpha} H(t, z)\right\|_{\mathbb{C}^{N, N}} \leq C_{\alpha} .
$$

- $\hat{H}(t)$ is the ε-pseudodifferential operator of symbol $H(t)$: if $f \in \mathcal{S}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)$,

$$
\widehat{H}(t) f(x):=(2 \pi \varepsilon)^{-d} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \mathrm{e}^{\frac{i}{\varepsilon} \xi \cdot(x-y)} H\left(t, \frac{x+y}{2}, \xi\right) f(y) d y d \xi .
$$

Examples

- Schrödinger Hamiltonian (Hagedorn): $H_{S}(t, x, \xi)=\frac{|\xi|^{2}}{2} 1_{C^{N}}+V(t, x)$
(2) Models arising from solid state physics (Watson \& Weinstein): $H_{A}(x, \xi)=A(\xi)+V_{\text {ext }}(t, x) \mathbf{1}_{\mathbb{C}^{2}}$

Propagation of wave packets

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}=\widehat{H}(t) \psi^{\varepsilon}, \quad \psi_{\mid t=t_{0}}^{\varepsilon}=\psi_{0}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)
$$

- H is of subquadratic growth

$$
\forall \alpha \in \mathbb{N}^{2 d}, \quad|\alpha| \geq 2, \quad \exists C_{\alpha}>0, \quad \sup _{(t, z) \in \mathbb{R} \times \mathbb{R}^{2 d}}\left\|\partial_{z}^{\alpha} H(t, z)\right\|_{\mathbb{C}^{N, N}} \leq C_{\alpha}
$$

- $\hat{H}(t)$ is the ε-pseudodifferential operator of symbol $H(t)$: if $f \in \mathcal{S}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)$,

$$
\widehat{H}(t) f(x):=(2 \pi \varepsilon)^{-d} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \mathrm{e}^{\frac{i}{\varepsilon} \xi \cdot(x-y)} H\left(t, \frac{x+y}{2}, \xi\right) f(y) d y d \xi .
$$

Examples :

(1) Schrödinger Hamiltonian (Hagedorn): $H_{S}(t, x, \xi)=\frac{|\xi|^{2}}{2} \mathbf{1}_{\mathbb{C}^{N}}+V(t, x)$
(2) Models arising from solid state physics (Watson \& Weinstein):

$$
H_{A}(x, \xi)=A(\xi)+V_{\text {ext }}(t, x) \mathbf{1}_{\mathbb{C}^{2}}
$$

Scalar equations : $N=1, H=h$ scalar

Theorem (Hagedorn, Combescure \& R.)

If $\psi_{0}^{\varepsilon}=\mathcal{W} P_{z_{0}}^{\varepsilon}$, then in $\sum_{\varepsilon}^{k}\left(\mathbb{R}^{d}\right)($ for any $k \in \mathbb{N})$

$$
\psi^{\varepsilon}(t)=\mathrm{e}^{\frac{i}{\varepsilon} S\left(t, t_{0}, z_{0}\right)} \mathcal{W} P_{z(t)}^{\varepsilon}\left(\sum_{j \geq 0} \varepsilon^{j / 2} \varphi_{j}(t, x)\right)+O\left(\varepsilon^{\infty}\right)
$$

- $z(t)$ is the classical trajectory associated with h :

$$
z(t)=\Phi_{h}^{t, t_{0}}\left(z_{0}\right)=(q(t), p(t)) .
$$

- $S\left(t, t_{0}, z_{0}\right)$ is the classical action associated with $z(t)$:

$$
\dot{S}\left(t, t_{0}, z_{0}\right)=p(t) \cdot \dot{q}(t)-h(t, z(t)), \quad S\left(t_{0}, t_{0}, z_{0}\right)=0 .
$$

- The profiles $\varphi_{j}(t)$ express in terms of the propagator $\mathcal{M}\left[F\left(t, t_{0}, z_{0}\right)\right]$ associated with the operator $\mathrm{op}_{1}^{w}\left(\operatorname{Hess}_{z} h(t, z(t)) z \cdot z\right)$:

$$
\varphi_{0}(t)=\mathcal{M}\left[F\left(t, t_{0}, z_{0}\right)\right] a, \varphi_{j}(t)=\mathcal{M}\left[F\left(t, t_{0}, z_{0}\right)\right] b_{j}\left(t, t_{0}, z_{0}\right) a .
$$

Scalar equations - N = 1, H = h scalar

$$
F\left(t, t_{0}, z_{0}\right):=\partial_{z} \Phi_{h}^{t, t_{0}}\left(z_{0}\right)=\left(\begin{array}{ll}
A\left(t, t_{0}, z_{0}\right) & B\left(t, t_{0}, z_{0}\right) \\
C\left(t, t_{0}, z_{0}\right) & D\left(t, t_{0}, z_{0}\right)
\end{array}\right)
$$

$b_{j}\left(t, t_{0}, z_{0}\right)$ are polynomials in $\left(x, D_{x}\right)$ of degree $\leq 3 j$. Example: If $a=g_{0}^{\Gamma_{0}}$ then

$$
\varphi(t, x)=g_{0}^{\Gamma\left(t, t_{0}, z_{0}\right)}(x)
$$

with

$$
\Gamma\left(t, t_{0}, z_{0}\right)=\left(C\left(t, t_{0}, z_{0}\right)+D\left(t, t_{0}, z_{0}\right) \Gamma_{0}\right)\left(A\left(t, t_{0}, z_{0}\right)+B\left(t, t_{0}, z_{0}\right) \Gamma_{0}\right)^{-1}
$$

Herman-Kluk propagators

Scalar equations : Hermann Kluk propagator

The Bargmann formula

$$
\psi(x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi\right\rangle g_{z}^{\varepsilon}(x) d z, \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Theorem (Kay 2006, Rousse \& Swart 2009, R.2010)

$$
\psi^{\varepsilon}(t)=(2 \pi \varepsilon)^{-d} \int_{\mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi_{0}^{\varepsilon}\right\rangle u\left(t, t_{0}, z\right) \mathrm{e}^{\frac{i}{\varepsilon} S\left(t, t_{0}, z\right)} g_{\Phi_{h}^{\varepsilon, t_{0}}(z)}^{\varepsilon} d z+O(\varepsilon),
$$

in $L^{2}\left(\mathbb{R}^{d}\right)$, with the Herman-Kluk prefactor
$u\left(t, t_{0}, z\right)=2^{-d / 2} \operatorname{det}^{1 / 2}\left(A\left(t, t_{0}, z\right)+D\left(t, t_{0}, z\right)+i\left(C\left(t, t_{0}, z\right)-B\left(t, t_{0}, z\right)\right)\right)$.

Numerical solvers of the Schrödinger equation [Lasser \& Sattleger 2017]

(1) Sampling of the data $\psi_{0}^{\varepsilon}(x) \sim(2 \pi \varepsilon)^{-d} \sum_{1 \leq j \leq N} r_{0}^{\varepsilon}\left(z_{j}\right) g_{z_{j}}^{\varepsilon}$
(2) Approximated formula for $\psi^{\varepsilon}(t)$ by solving ODEs

Scalar equations : Hermann Kluk propagator

The Bargmann formula

$$
\psi(x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi\right\rangle g_{z}^{\varepsilon}(x) d z, \quad \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

Theorem (Kay 2006, Rousse \& Swart 2009, R.2010)

$$
\psi^{\varepsilon}(t)=(2 \pi \varepsilon)^{-d} \int_{\mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi_{0}^{\varepsilon}\right\rangle u\left(t, t_{0}, z\right) \mathrm{e}^{\frac{i}{\varepsilon} S\left(t, t_{0}, z\right)} g_{\Phi_{h}^{t, t_{0}}(z)}^{\varepsilon} d z+O(\varepsilon),
$$

in $L^{2}\left(\mathbb{R}^{d}\right)$, with the Herman-Kluk prefactor

$$
u\left(t, t_{0}, z\right)=2^{-d / 2} \operatorname{det}^{1 / 2}\left(A\left(t, t_{0}, z\right)+D\left(t, t_{0}, z\right)+i\left(C\left(t, t_{0}, z\right)-B\left(t, t_{0}, z\right)\right)\right) .
$$

\Longrightarrow Numerical solvers of the Schrödinger equation [Lasser \& Sattleger 2017]
(1) Sampling of the data $\psi_{0}^{\varepsilon}(x) \sim(2 \pi \varepsilon)^{-d} \sum_{1 \leq j \leq N} r_{0}^{\varepsilon}\left(z_{j}\right) g_{z_{j}}^{\varepsilon}$
(2) Approximated formula for $\psi^{\varepsilon}(t)$ by solving ODEs

$$
\left.\psi^{\varepsilon}(t, x) \sim(2 \pi \varepsilon)^{-d} \sum_{1 \leq j \leq N} r_{0}^{\varepsilon}\left(z_{j}\right)\right)^{\frac{i}{\varepsilon} S_{1}\left(t, t_{0}, z_{j}\right)} u_{1}\left(t, t_{0}, z_{j}\right) g_{\phi_{z_{j}}, t_{0}}^{\varepsilon} .
$$

Scalar equations : Hermann Kluk propagator

Sketch of Proof

$$
\begin{gathered}
\psi_{0}^{\varepsilon}(x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi_{0}^{\varepsilon}\right\rangle g_{z}^{\varepsilon}(x) d z \\
\Longrightarrow \psi^{\varepsilon}(t, x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}} \mathrm{e}^{\frac{i}{\varepsilon} S(t, 0, z)}\left\langle g_{z}^{\varepsilon}, \psi\right\rangle\left(g_{\phi_{h}^{t, 0}(z)}^{\Gamma(t, 0, z), \varepsilon}(x)+\sqrt{\varepsilon} \varphi_{1}^{\varepsilon}(t, x, z)\right) d z .
\end{gathered}
$$

We use two lemma
(1) Treat the remainder in $O(\sqrt{\varepsilon})$ in order to obtain $O(\varepsilon)$, using the special shape of source term in the equation of $\varphi_{1}(t)$.
(2) Turn the width $\Gamma\left(t, t_{0}, z\right)$ of the Gaussian into the prefactor $u\left(t, t_{0}, z\right)$ by a deformation argument drawing a path form $\Gamma_{0}=i I d$ to $\Gamma_{1}=\Gamma(t, 0, z)$.

Remark. We could define HK-prefactor connecting $\Gamma_{1}=\Gamma\left(t, t_{s} 0, z\right)$ to any Γ_{0} instead of iId.

Scalar equations : Hermann Kluk propagator

Sketch of Proof

$$
\begin{gathered}
\psi_{0}^{\varepsilon}(x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, \psi_{0}^{\varepsilon}\right\rangle g_{z}^{\varepsilon}(x) d z \\
\Longrightarrow \psi^{\varepsilon}(t, x)=(2 \pi \varepsilon)^{-d} \int_{z \in \mathbb{R}^{2 d}} \mathrm{e}^{\frac{i}{\varepsilon} S(t, 0, z)}\left\langle g_{z}^{\varepsilon}, \psi\right\rangle\left(g_{\phi_{h}^{t, 0}(z)}^{\Gamma(t, 0, z), \varepsilon}(x)+\sqrt{\varepsilon} \varphi_{1}^{\varepsilon}(t, x, z)\right) d z
\end{gathered}
$$

We use two lemma
(1) Treat the remainder in $O(\sqrt{\varepsilon})$ in order to obtain $O(\varepsilon)$, using the special shape of source term in the equation of $\varphi_{1}(t)$.
(2) Turn the width $\Gamma\left(t, t_{0}, z\right)$ of the Gaussian into the prefactor $u\left(t, t_{0}, z\right)$ by a deformation argument drawing a path form $\Gamma_{0}=i I d$ to $\Gamma_{1}=\Gamma(t, 0, z)$.

Remark. We could define HK-prefactor connecting $\Gamma_{1}=\Gamma\left(t, t_{s} 0, z\right)$ to any Γ_{0} instead of iId.

What about systems ?

The constant multiplicity case

Example The Dirac operator

Let $H \in \mathcal{C}^{\infty}\left(\mathbb{R} \times \mathbb{R}^{2 d}, \mathbb{C}^{N, N}\right)$, subquadratic matrix symbol with two eigenvalues $\lambda_{ \pm}(t, X)$ with multiplicity $m \pm\left(m_{-}+m_{+}=N\right)$ s.t $\exists \delta>0$,

$$
\left|\lambda_{+}(t, X)-\lambda_{-}(t, X)\right| \geq \delta, \forall t \in \mathbb{R}, X \in \mathbb{R}^{2 d}
$$

The Schrödinger equation

$$
i \varepsilon \partial_{t} \psi^{\varepsilon}=\widehat{H}(t) \psi^{\varepsilon}, \psi_{\mid t=t_{0}}^{\varepsilon}=\psi_{0}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)
$$

can be decoupled mod $O\left(\varepsilon^{\infty}\right)$ and we are reduced to scalar independent Schrödinger equations (at least for the leading order in ε). Notations. $\Pi^{ \pm}(t, X)$ the spectral projector for the eigenvalue $\lambda_{ \pm}(t, X)$

Theorem (semi-classical decoupling Emmrich-Weinstein 1996)

There exist unique self-adjoint formal projections $\hat{\Pi}^{ \pm, \varepsilon}(t)$, smooth in t, such that $\hat{\Pi}_{0}^{ \pm}(t, X)=\mathrm{Op}_{w}^{\varepsilon}\left(\Pi^{ \pm}(t)\right)$ and

$$
\left(i \varepsilon \partial_{t}-H(t)\right) \hat{\Pi}^{ \pm, \varepsilon}(t)=\hat{\Pi}^{ \pm, \varepsilon}(t)\left(i \varepsilon \partial_{t}-H(t)\right)
$$

There exist formal matricial symbols $H^{ \pm, \varepsilon}(t)$ such that $H_{0}^{ \pm}(t, X)=\lambda^{ \pm}(t, X) \mathbf{1}_{m_{ \pm}}$and

$$
\Pi^{ \pm, \varepsilon}(t)\left(i \varepsilon \partial_{t}-\hat{H}(t)\right)=\hat{\Pi}^{ \pm, \varepsilon}(t)\left(i \varepsilon \partial_{t}-\hat{H}^{ \pm}(t)\right)
$$

Moreover, the subprincipal term $H_{1}^{+}(t)$ of $\mathrm{H}^{+}(t)$ is given by the formula

$$
\begin{align*}
& H_{1}^{+}(t)=-\frac{1}{2 i}\left(\lambda_{+}(t)-\lambda_{-}(t)\right)\left\{\Pi_{+}(t), \Pi_{+}(t)\right\} \\
& +i\left(\partial_{t} \Pi_{+}(t)-\left\{\Pi_{+}(t), \lambda_{+}\right\}\right)\left(\Pi_{+}(t)-\Pi_{-}(t)\right) . \tag{1}
\end{align*}
$$

Let $\mathcal{U}\left(t, t_{0}\right), \mathcal{U}_{ \pm}\left(t, t_{0}\right)$ the unitary propagators for $\hat{H}(t), \hat{H}^{ \pm}(t)$ (Exist for sub-quadratic Hamiltonians).

Corollary

$$
\mathcal{U}\left(t, t_{0}\right)=\hat{\Pi}^{+, \varepsilon}(t) \mathcal{U}_{+}\left(t, t_{0}\right) \hat{\Pi}^{+, \varepsilon}\left(t_{0}\right)+\hat{\Pi}^{-, \varepsilon}(t) \mathcal{U}_{-}\left(t, t_{0}\right) \hat{\Pi}^{-, \varepsilon}\left(t_{0}\right)+O\left(\varepsilon^{\infty}\right)
$$

Remark The sub-principal terms $H_{1}^{ \pm}$in $H^{ \pm}(t)$ mix the states in the modes + and - . This is clear by computing time evolution of coherent states.

Let $\mathcal{R}^{ \pm}\left(t, t_{0}\right)$ the matrix satisfying $\partial_{t} \mathcal{R}^{ \pm}\left(t, t_{0}\right)+i H_{1}^{ \pm}\left(t, z^{ \pm}(t)\right)=0$,

$$
\mathcal{R}^{ \pm}\left(t_{0}, t_{0}\right)=\mathbf{1}_{\mathbb{C}^{N}}
$$

Corollary (Bily Ph.D thesis 2001)

$a:=g$ is a Gaussian.
For every $\left(z_{0}, v_{0}\right) \in \mathbb{R}^{2 d} \times \mathbb{C}^{N}$, we have $\psi^{\varepsilon}(t) \approx \psi^{+, \varepsilon}(t)+\psi^{-, \varepsilon}(t)$ where

$$
\begin{gathered}
\psi^{ \pm, \varepsilon}(t)=\mathrm{e}^{\frac{i}{\varepsilon} S^{ \pm}\left(t, t_{0}, z_{0}\right)} \mathcal{W} P_{z^{ \pm}(t)}^{\varepsilon}\left(\sum_{j \geq 0} \varepsilon^{j / 2} \varphi_{j}^{ \pm}(t, x)\right)+O\left(\varepsilon^{\infty}\right) . \\
\varphi_{j}^{ \pm}(t)=\mathcal{R}^{ \pm}\left(t, t_{0}\right) \mathcal{M}\left[F^{ \pm}\left(t, t_{0}, z_{0}\right)\right] b_{j}^{ \pm}\left(t, t_{0}, z_{0}, v_{0}\right) g .
\end{gathered}
$$

$b_{j}^{ \pm}(t)$, polynomials of degree $\leq 3 j$, with coefficients in \mathbb{C}^{N}.

$$
b_{0}^{ \pm}(t)=\pi_{ \pm}(t, z) \mathcal{R}^{ \pm}\left(t, t_{0}\right) \pi_{ \pm}\left(t_{0}, z\right) v .
$$

For $j \geq 2$ polarizations + and - are no more separated in $b_{j}^{ \pm}(t)$.
Explicite computations are possible for $b_{2}^{ \pm}(t)$!
To follow the phase of states: adiabatic decoupling for systems with a (small) spectral gap.

adiabatic decoupling

Let $h(t, z)$ be an eigenvalue of $H(t, z)$ and $\Pi(t, z)$ the associated eigenprojector:

$$
H(t, z) \Pi(t, z)=\Pi(t, z) H(t, z)=h(t, z) \Pi(t, z)
$$

Gap assumption: $\exists \delta>0, \forall(t, z)$, dist $(h(t, z), \sigma(H(t, z)) \backslash\{h(t, z)\})>\delta$.

Theorem (Kato revisited)

If $\psi_{0}^{\varepsilon}=\widehat{\vec{V}_{0}} v_{0}^{\varepsilon}$ with $v_{0}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ and $\Pi\left(t_{0}, z\right) \vec{V}_{0}(z)=\vec{V}_{0}(z)$, then in $L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)$

$$
\psi^{\varepsilon}(t)=\widehat{\vec{V}(t)} v^{\varepsilon}(t)+O(\varepsilon)
$$

where $\Pi(t, z) \vec{V}(t, z)=\vec{V}(t, z)$ and $v^{\varepsilon}(t)$ solves

$$
i \varepsilon \partial_{t} v^{\varepsilon}=\widehat{h}(t) v^{\varepsilon} \quad v_{\mid t=t_{0}}^{\varepsilon}=v_{0}^{\varepsilon} .
$$

Besides, if $\left(\psi_{0}^{\varepsilon}\right)_{\varepsilon>0}$ is unif. bounded in $\sum_{\varepsilon}^{k}(k \in \mathbb{N})$, then convergence in \sum_{ε}^{k}.

adiabatic decoupling

Let $h(t, z)$ be an eigenvalue of $H(t, z)$ and $\Pi(t, z)$ the associated eigenprojector:

$$
H(t, z) \Pi(t, z)=\Pi(t, z) H(t, z)=h(t, z) \Pi(t, z)
$$

Gap assumption: $\exists \delta>0, \forall(t, z)$, dist $(h(t, z), \sigma(H(t, z)) \backslash\{h(t, z)\})>\delta$.

Theorem (Kato revisited)

If $\psi_{0}^{\varepsilon}=\widehat{\vec{V}_{0}} v_{0}^{\varepsilon}$ with $v_{0}^{\varepsilon} \in L^{2}\left(\mathbb{R}^{d}, \mathbb{C}\right)$ and $\Pi\left(t_{0}, z\right) \vec{V}_{0}(z)=\vec{V}_{0}(z)$, then in $L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{N}\right)$

$$
\psi^{\varepsilon}(t)=\widehat{\vec{V}(t)} v^{\varepsilon}(t)+O(\varepsilon)
$$

where $\Pi(t, z) \vec{V}(t, z)=\vec{V}(t, z)$ and $v^{\varepsilon}(t)$ solves

$$
i \varepsilon \partial_{t} v^{\varepsilon}=\widehat{h}(t) v^{\varepsilon} \quad v_{\mid t=t_{0}}^{\varepsilon}=v_{0}^{\varepsilon} .
$$

Besides, if $\left(\psi_{0}^{\varepsilon}\right)_{\varepsilon>0}$ is unif. bounded in $\sum_{\varepsilon}^{k}(k \in \mathbb{N})$, then convergence in \sum_{ε}^{k}.
\Longrightarrow Who is $\vec{V}(t, z)$?

Gapped systems - parallel transport

We set

$$
\begin{aligned}
& \Omega(t, z)=\Pi(t, z)\{\Pi, H\}(t, z) \Pi(t, z) \\
& K(t, z)=\left(\operatorname{Id}_{\mathbb{C}^{N}}-\Pi(t, z)\right)\left(\partial_{t} \Pi(t, z)+\{h, \Pi\}(t, z)\right) \Pi(t, z) .
\end{aligned}
$$

Then,

- $\Omega(t, z)$ is a skew-symmetric matrix,
- $K(t, z)$ and $\Omega(t, z)$ are smooth,.

Proposition (Hagedorn 1994, FLR 2019)

There exists a smooth vector-valued function $\vec{V}(t, z)$ such that

$$
\begin{aligned}
\quad \Pi(t, z) \vec{V}(t, z)=\vec{V}(t, z), \quad|\vec{V}(t, z)|=1, \\
\partial_{t} \vec{V}(t, z)+\{h, \vec{V}\}(t, z)=\Omega(t, z) \vec{V}(t, z)+K(t, z) \vec{V}(t, z), \quad \vec{V}(0, z)=\vec{V}_{0}(z) .
\end{aligned}
$$

The result holds independently of the existence of the gap if \square and h are smooth.

Gapped systems - Hermann Kluk propagator

Adiabatic decoupling: If $\psi_{0}^{\varepsilon}=\widehat{\vec{V}_{0}} v_{0}^{\varepsilon}+O(\varepsilon)$ with $\Pi(0, z) \vec{V}_{0}(z)=\vec{V}_{0}(z)$, then

$$
\psi^{\varepsilon}(t)=\widehat{\vec{V}(t)} v^{\varepsilon}(t)+O(\varepsilon)
$$

where $v^{\varepsilon}(t)$ solves $i \varepsilon \partial_{t} v^{\varepsilon}=\widehat{h}(t) v^{\varepsilon} \quad v_{\mid t=t_{0}}^{\varepsilon}=v_{0}^{\varepsilon}$.
\Longrightarrow Herman-Kluk representation of the propagator of a gapped system

Corollary (FLR 2019)

$$
\psi^{\varepsilon}(t)=(2 \pi \varepsilon)^{-d} \int_{\mathbb{R}^{2 d}}\left\langle g_{z}^{\varepsilon}, v_{0}^{\varepsilon}\right\rangle u\left(t, t_{0}, z\right) \vec{V}\left(t, \Phi_{h}^{t, t_{0}}(z)\right) \mathrm{e}^{\frac{i}{\varepsilon} S\left(t, t_{0}, z\right)} g_{\Phi_{h}^{t, 0}(z)}^{\varepsilon} d z+O(\varepsilon) .
$$

- A vector-valued Herman-Kluk prefactor:

$$
\vec{U}\left(t, t_{0}, z\right)=u\left(t, t_{0}, z\right) \vec{V}\left(t, \Phi_{h}^{t, t_{0}}(z)\right) .
$$

- Approximation in finite time and in $L^{2}\left(\mathbb{R}^{d}\right)$.

What about systems with crossings ?

$$
H(t, z)=v(t, z) \operatorname{Id}+\left(\begin{array}{cc}
p_{1}(t, z) & p_{2}(t, z)+i p_{3}(t, z) \tag{2}\\
p_{2}(t, z)-i p_{3}(t, z) & -p_{1}(t, z)
\end{array}\right)
$$

$v \in \mathbb{R}$ and $p(t, z)=\left(p_{1}(t, z), p_{2}(t, z), p_{3}(t, z)\right) \in \mathbb{R}^{3}$ smooth functions.
The eigenvalues of $H(t, z)$, ordered by size, are the real numbers

$$
v(t, z)-|p(t, z)|=\lambda_{-}(t, z) \leq \lambda_{+}(t, z)=v(t, z)+|p(t, z)|
$$

The functions $(t, z) \mapsto \lambda_{ \pm}(z)$ are smooth in open sets where $p(t, z) \neq 0_{\mathbb{R}^{3}}$. When $\Upsilon:=\left\{(t, z) \in \mathbb{R} \times \mathbb{R}^{2 d}, p(t, z)=0_{\mathbb{R}^{3}}\right\}$ is an hypersurface we have a codimension 1 crossing (see Hagedorn's classification).

Assume that there exists a smooth function $(t, z) \mapsto f(t, z)$ such that $d f \neq 0$ on Υ. Then

$$
p_{j}(t, z)=f(t, z) u_{j}(t, z), j \in\{1,2,3\}
$$

and we assume further that $u_{1}(t, z)^{2}+u_{2}(t, z)^{2}+u_{3}(t, z)^{2}=1$ on Υ.
Then, the functions

$$
\begin{equation*}
h_{j}(z)=v(z)-(-1)^{j} f(z), \quad j \in\{1,2\}, \quad v=\frac{1}{2} \operatorname{tr} H \tag{3}
\end{equation*}
$$

correspond to a renumbering of the eigenvalues on both sides of the hypersurface Υ. This is a specific feature of codimension 1 crossing: the existence of smooth eigenvalues after renumbering.

Systems with codimension 1 crossings - Notations

- $N=2, H(t, z)=h_{1}(t, z) \Pi_{1}(t, z)+h_{2}(t, z) \Pi_{2}(t, z)$.
- The functions h_{1}, h_{2}, Π_{1} and Π_{2} are smooth and

$$
h_{1}=v+f, \quad h_{2}=v-f, \quad v=\frac{1}{2} \operatorname{Tr} H, f \text { is the gap. }
$$

- Classical quantities associated with $h_{j} j \in\{1,2\}$

$$
\Phi_{j}^{t, t_{0}}(z), S_{j}\left(t, t_{0}, z\right), F_{j}\left(t, t_{0}, z\right), \Gamma_{j}\left(t, t_{0}, z\right), u_{j}\left(t, t_{0}, z\right), \vec{U}_{j}\left(t, t_{0}, z\right), \ldots
$$

- Two families of eigenvectors obtained by parallel transport: with $\vec{V}_{j}\left(t_{0}, z\right)$ such that $\Pi_{j}\left(t_{0}, z\right) \vec{V}_{j}(z)=\vec{V}_{j}(z), j \in\{1,2\}$ one associates

$$
(t, z) \mapsto \vec{V}_{j}\left(t, t_{0}, z\right), \quad \vec{V}_{j}\left(t_{0}, t_{0}, z\right)=\vec{V}_{j}(z)
$$

Systems with codimension 1 crossings - Geometry

- Generic codimension 1 crossing:

$$
\partial_{t} f+\{v, f\} \neq 0
$$

\Longrightarrow The trajectories are transverse to the crossing hypersurface

$$
\Upsilon=\{f(t, z)=0\} .
$$

- If z is such that $\Phi_{1}^{t, t_{0}}(z)$ crosses Υ we denote by $t^{\natural}(z)$ the crossing time

$$
\Phi_{1}^{\mathrm{t}^{\natural}(z), t_{0}}(z)=z^{\natural}(z) \in \Upsilon .
$$

- The map $z \mapsto t^{\natural}(z) \in \mathbb{R}$ is well-defined and smooth.
- We associate with $z \in \mathbb{R}^{2 d}$

$$
S^{\natural}(z)=S_{1}\left(t^{\natural}, t_{0}, z\right), \quad \alpha^{\natural}(z)=\left(\left(\left\{v, \Pi_{2}\right\}+\partial_{t} \Pi_{2}\right) \vec{V}_{1} \cdot \vec{V}_{1}^{\perp}\right)\left(t^{\natural}, z^{\natural}\right) .
$$

- With $\left.\vec{V}_{1}(z)=\Pi_{1}\left(t_{0}, z\right) \vec{V}_{1}(z)\right)$, we associate $\vec{V}_{1}\left(t, t_{0}, z\right)$ and $\vec{V}_{2}\left(t, t^{\natural}, z\right)$ with

$$
\vec{V}_{2}\left(t^{\natural}, t^{\natural}, z\right)=\vec{V}_{1}\left(t^{\natural}, t_{0}, z\right)^{\perp} .
$$

Codimension 1 crossings - Propagation of wave packets

We assume $\psi_{0}^{\varepsilon}=\widehat{\vec{V}_{1}} v_{0}^{\varepsilon}, \quad v_{0}^{\varepsilon}=\mathcal{W} P_{z_{0}}^{\varepsilon}(a)$
Theorem (Hagedorn 94, Watson \& Weinstein 18, FLR 19-20?)

$$
\psi^{\varepsilon}(t)=\widehat{\vec{V}}_{1}(t) v_{1}^{\varepsilon}(t)+\sqrt{\varepsilon} \mathbf{1}_{t>t^{\natural}} \widehat{\vec{V}}_{2}(t) v_{2}^{\varepsilon}(t)+O\left(\varepsilon^{5 / 8}\right)
$$

in $\sum_{\varepsilon}^{k}($ for any $k \in \mathbb{N})$ where

- $v_{1}^{\varepsilon}(t)$ solves i\& $\partial_{t} v_{1}^{\varepsilon}=\widehat{h}_{1} v_{1}^{\varepsilon}, \quad v_{1}^{\varepsilon}(0)=\mathcal{W} P_{z_{0}}^{\varepsilon}(a)$.
- $v_{2}^{\varepsilon}(t)$ solves $i \varepsilon \partial_{t} v_{2}^{\varepsilon}=\widehat{h}_{2} v_{2}^{\varepsilon}, \quad v_{2}^{\varepsilon}\left(t^{\natural}\right)=\alpha^{\natural} \mathrm{e}^{i S^{\natural} / \varepsilon \mathcal{W} P_{z^{\natural}}^{\varepsilon}\left(\mathcal{T}^{\natural} \varphi_{1}\left(t^{\natural}\right)\right) \text {, }, \text {, }{ }^{\text {a }} \text {, }}$
where $\alpha^{\natural}, S^{\natural}$ are classical quantities associated with the crossing point z^{\sharp}, $\varphi_{1}\left(t^{\natural}\right)$ is the profile of $v_{1}^{\varepsilon}\left(t^{\natural}\right)$, and \mathcal{T}^{\sharp} is a transfer operator mapping $\mathcal{S}\left(\mathbb{R}^{d}\right)$ into itself and preserving Gaussians.
Gaussian Wave packets: If $a=g_{0}^{\Gamma_{0}}$ is Gaussian then $\varphi_{1}\left(t^{\natural}\right)=g_{0}^{\Gamma_{1}\left(t^{\natural}, t, z_{0}\right)}$,

$$
\mathcal{T}^{\natural} g_{0}^{\Gamma_{1}\left(t^{\natural}, t, z_{0}\right)}=g_{0}^{\Gamma^{\natural}} .
$$

Systems with codimension 1 crossings - Gaussian data

Sketch of proof. In the case $H=H(z)$ (no time dependence)

$$
w_{1}^{\varepsilon}(t)=\widehat{\Pi}_{1} \psi^{\varepsilon}(t)-\widehat{\vec{V}_{1}(t)} v_{1}^{\varepsilon}(t), \quad w_{2}^{\varepsilon}(t)=\widehat{\Pi}_{2} \psi^{\varepsilon}(t), \quad w^{\varepsilon}=\left(w_{1}^{\varepsilon}, w_{2}^{\varepsilon}\right) .
$$

Then $w_{1}^{\varepsilon}(0)=w_{2}^{\varepsilon}(0)=0$ and for $s, t \in \mathbb{R}$, in $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{gathered}
w_{1}^{\varepsilon}(t)=w_{1}^{\varepsilon}(s)+\int_{s}^{t} Q_{1}(\sigma) w^{\varepsilon}(\sigma) d \sigma+O(\varepsilon), \\
w_{2}^{\varepsilon}(t)=w_{2}^{\varepsilon}(s)+\int_{s}^{t} Q_{2}(\sigma) w^{\varepsilon}(\sigma) d \sigma+\widetilde{\mathcal{T}}^{\varepsilon}(t, s) v_{0}^{\varepsilon}+O(\varepsilon)
\end{gathered}
$$

where

$$
\widetilde{\mathcal{T}}^{\varepsilon}(t, s)=\int_{s}^{t} \mathrm{e}^{-\frac{i}{\varepsilon}(t-\sigma) \widehat{h}_{2}} \widehat{\alpha \vec{V}_{2}}(\sigma) \mathrm{e}^{-\frac{i}{\varepsilon} \sigma \widehat{h}_{1}} d \sigma
$$

the operators Q_{1} and Q_{2} are bounded.From 0 to $t^{\natural}-\delta$, one can use adiabaticity and get $\mathcal{T}^{\varepsilon}($From

Systems with codimension 1 crossings - Gaussian data

Sketch of proof. In the case $H=H(z)$ (no time dependence)

$$
w_{1}^{\varepsilon}(t)=\widehat{\Pi}_{1} \psi^{\varepsilon}(t)-\widehat{\vec{V}_{1}(t)} v_{1}^{\varepsilon}(t), \quad w_{2}^{\varepsilon}(t)=\widehat{\Pi}_{2} \psi^{\varepsilon}(t), \quad w^{\varepsilon}=\left(w_{1}^{\varepsilon}, w_{2}^{\varepsilon}\right) .
$$

Then $w_{1}^{\varepsilon}(0)=w_{2}^{\varepsilon}(0)=0$ and for $s, t \in \mathbb{R}$, in $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{gathered}
w_{1}^{\varepsilon}(t)=w_{1}^{\varepsilon}(s)+\int_{s}^{t} Q_{1}(\sigma) w^{\varepsilon}(\sigma) d \sigma+O(\varepsilon), \\
w_{2}^{\varepsilon}(t)=w_{2}^{\varepsilon}(s)+\int_{s}^{t} Q_{2}(\sigma) w^{\varepsilon}(\sigma) d \sigma+\widetilde{\mathcal{T}}^{\varepsilon}(t, s) v_{0}^{\varepsilon}+O(\varepsilon)
\end{gathered}
$$

where

$$
\widetilde{\mathcal{T}}^{\varepsilon}(t, s)=\int_{s}^{t} \mathrm{e}^{-\frac{i}{\varepsilon}(t-\sigma) \widehat{h}_{2}} \widehat{\alpha \vec{V}_{2}}(\sigma) \mathrm{e}^{-\frac{i}{\varepsilon} \sigma \widehat{h}_{1}} d \sigma
$$

the operators Q_{1} and Q_{2} are bounded.
(1) From 0 to $t^{\natural}-\delta$, one can use adiabaticity and get $\mathcal{T}^{\varepsilon}\left(t, t_{0}\right)=O\left(\varepsilon \delta^{-1}\right)$.
(2) From $t^{\natural}-\delta$ to $t^{\natural}+\delta$, analysis of the operator $\mathcal{T}^{\varepsilon}\left(t^{\natural}+\delta, t^{\natural}-\delta\right)$ for small δ.

Codimension 1 crossings - The transfer operator

- Writing $\widetilde{\mathcal{T}}^{\varepsilon}\left(t^{\natural}+\delta, t^{\natural}-\delta\right) v_{0}^{\varepsilon}$ as an operator on $v_{1}^{\varepsilon}\left(t^{\natural}\right)$.

$$
\widetilde{\mathcal{T}}^{\varepsilon}\left(t^{\natural}+\delta, t^{\natural}-\delta\right) v_{0}^{\varepsilon}=\mathrm{e}^{-\frac{i}{\varepsilon} \delta \widehat{h}_{2}}\left(\int_{-\delta}^{\delta} \mathrm{e}^{\frac{i}{\varepsilon} \sigma \widehat{h}_{2}} \widehat{\alpha \vec{V}_{2}}\left(t^{\natural}+\sigma\right) \mathrm{e}^{-\frac{i}{\varepsilon} \sigma \widehat{h}_{1}} d \sigma\right) v_{1}^{\varepsilon}\left(t^{\natural}\right)
$$

- Egorov theorem and approximation of the trajectories

$$
\widetilde{\mathcal{T}}^{\varepsilon}\left(t^{\natural}+\delta, t^{\natural}-\delta\right) v_{0}^{\varepsilon}=\mathrm{e}^{-\frac{i}{\varepsilon} \delta \widehat{h}_{2}} \widehat{\alpha \vec{V}_{2}}\left(t^{\natural}\right)\left(\int_{-\delta}^{\delta} \mathrm{e}^{\frac{i}{\varepsilon} \sigma \widehat{h}_{2}} \mathrm{e}^{-\frac{i}{\varepsilon} \sigma \widehat{h}_{1}} d \sigma\right) v_{1}^{\varepsilon}\left(t^{\natural}\right)+O\left(\delta^{2}\right)
$$

- Wave packet approximation

$$
\widetilde{\mathcal{T}}^{\varepsilon}\left(t^{\natural}+\delta, t^{\natural}-\delta\right) v_{0}^{\varepsilon}=\mathrm{e}^{-\frac{i}{\varepsilon} \delta \widehat{h}_{2}} \mathrm{e}^{i S^{\natural} / \varepsilon} \widehat{\alpha \vec{V}_{2}}\left(t^{\natural}\right) \mathcal{T}_{\delta}^{\varepsilon} \varphi_{1}\left(t^{\natural}\right)+O(\varepsilon)+O\left(\delta^{2}\right) .
$$

Codimension 1 crossings - The transfer operator

$$
\begin{aligned}
& \mathcal{T}_{\delta}^{\varepsilon}=\int_{-\delta}^{+\delta} \mathrm{e}^{\frac{i}{\varepsilon}\left(S_{1}\left(t^{\natural}+\sigma, t^{\natural}, z^{\natural}\right)+S_{2}\left(t^{\natural}, t^{\natural}+\sigma, \Phi_{1}^{t^{\natural}+\sigma, t^{\natural}}\left(z^{\natural}\right)\right)\right)} \mathcal{W} P_{\zeta(\sigma)}^{\varepsilon} d \sigma \\
& \zeta(\sigma)=\Phi_{2}^{t^{\natural}}, t^{\natural}+\sigma \circ \Phi_{1}^{t^{\natural}}+\sigma, t^{\natural}\left(z^{\natural}\right) .
\end{aligned}
$$

After Taylor expansions, one can find $\lambda^{\natural}, \beta^{\natural}=\left(\beta_{q}^{\natural}, \beta_{p}^{\natural}\right)$ such that

$$
\mathcal{T}_{\delta}^{\varepsilon}=\int_{-\infty}^{+\infty} \mathrm{e}^{i \lambda^{\natural} s^{2}} \mathrm{e}^{i s \beta_{p}^{\natural} \cdot y} \varphi\left(y-s \beta_{q}^{\natural}\right) d s+O(\varepsilon)+O\left(\delta^{2}\right)+O\left(\varepsilon^{-1 / 2} \delta^{3}\right) .
$$

- If $H=H_{S}$, as in [Hagedorn 1994], $\beta_{q}=0$.
- If $H=H_{A}$ as in [Watson-Weinstein 2019], $\beta_{p}=0$.

Codimension 1 crossings - Herman-Kluk propagator

Theorem

Assume $\psi_{0}^{\varepsilon}=\widehat{\vec{V}}_{1} v_{0}^{\varepsilon}$. then

$$
\begin{aligned}
& \psi^{\varepsilon}(t, x)=(2 \pi \varepsilon)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\frac{i}{\varepsilon} S_{1}(t, 0, z)} \vec{U}_{1}^{\varepsilon}(t, z)\left\langle g_{z}^{\varepsilon}, v_{0}^{\varepsilon}\right\rangle g_{\Phi_{1}^{t, 0}(z)}^{\varepsilon}(x) d z \\
& +\sqrt{\varepsilon}(2 \pi \varepsilon)^{-d} \int_{\mathbb{R}^{2 d}} \mathbf{1}_{\left[t^{\natural}(z)<t\right]} \alpha^{\natural}(z) \mathrm{e}^{\frac{i}{\varepsilon} S^{\natural}(z)} \mathrm{e}^{\frac{i}{\varepsilon} S_{2}\left(t, t^{\natural}, z^{\natural}\right)} \vec{U}_{2}^{\varepsilon}(t, z) \\
&
\end{aligned}
$$

with vector-valued Herman-Kluk prefactors

$$
\begin{gathered}
\vec{U}_{1}^{\varepsilon}(t, z)=\vec{V}_{1}\left(t, t_{0}, \Phi_{1}^{t, t_{0}}(z)\right) u_{1}\left(t, t_{0}, z\right), \\
\vec{U}_{2}^{\varepsilon}(t, z)=\vec{V}_{2}\left(t, t^{\natural}(z), \Phi_{2}^{t, t^{\natural}(z)}\left(z^{\natural}(z)\right)\right) u_{2}\left(t, t^{\natural}(z), z\right) .
\end{gathered}
$$

Codimension 1 crossings - Proofs

Assume $\partial_{t} f+\{v, f\}>0$

- Smoothen the cut off

$$
\mathbf{1}_{\left[t^{\natural}(z)<t\right]}=\mathbf{1}_{\Omega(t)}, \quad \Omega(t)=\left\{f(z)<0, f\left(\Phi_{1}^{t, 0}(z)\right)>0\right\} .
$$

\Longrightarrow A new parameter $\delta>0$ and a prefactor of the form $\chi\left(\delta^{-1}\left(t-t^{\natural}(z)\right)\right.$.

- Identify a canonical transform in the map (broken flow)

$$
z \mapsto \Phi_{2}^{t, t^{\natural}(z)} \circ \Phi_{1}^{t^{\natural}(z), t_{0}}(z) .
$$

- Revisit the two lemmas of the scalar proof for this new canonical transform and compute the rest in terms of the derivatives of the prefactor in order to control the lost in δ.

Perspectives

- The Herman-Kluk approximation fits to a numerical realization \Longrightarrow after a phasis of implementation of the initial data, one is reduced to propagate classical quantities along the trajectories.
- The Herman-Kluk approximation of the propagator that we propose for codimension 1 crossing contains the generation of new trajectories when one hits the crossing hypersurface, which is reminiscent from surface hoppings algorithms of quantum chemistry.
- The next step would be to extend this approach to codimension 2 crossings with conical intersections.

MEMOIRS
 American Mathematical Society
 Number 936

Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules

André Martinez
Vania Sordoni

Happy birthday André !!!

