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1. Introduction and background

For self-adjoint (pseudo-)differential operators with discrete
spectrum we know that the eigenvalues are distributed according
to the Weyl law, under quite general assumptions. This holds for
large eigenvalues and also in the semi-classical limit: Let
P = P(x , hD; h) with P(x , ξ; h) = p(x , ξ) +O(h). Then

#(σ(P) ∩ Ω) = (2πh)−n
(
vol (p−1(Ω)) + o(1)

)
, 0 < h→ 0. (1)

vol = the volume in real phase space, σ(P) = the spectrum of P;
we only consider operators with discrete spectrum.

Non-self-adjoint (pseudo-)differential operators. Here, the situation
is more complicated. When the coefficients are analytic, the
spectrum may depend on the behaviour of the symbol in the
complex domain (e.g. by the complex WKB method), while the
natural Weyl law refers only to the behaviour in real phase space,
and (1) may fail to hold.
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Another feature of general non-self-adjoint operators is the spectral
instability; the resolvent may be very large away from σ(P):

‖(z − P)−1‖ � 1

dist (z , σ(P))
.

In the case of differential operators this follows from quasi-mode
constructions for P − z or its adjoint: Hörmander [Ho60a, Ho60b],
E.B. Davies [Da99], M. Zworski [Zw01], N. Dencker–Sj–Zworski
[DeSjZw04].
Equivalently, the spectrum can be very unstable under small
perturbations of the operator.
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It is natural to add a small random perturbation. One line of
research concerns the case of elliptic (pseudo-)differential operators
with small random perturbations, M. Hager, W. Bordeaux
Montrieux, Sj, Vogel, 2005–present: Under quite general
assumptions, we have Weyl asymptotics with probability close to 1
for the distribution of eigenvalues:

#(Ω ∩ σ(P + δQ)) ≈
(

2π

h

)n

vol
(
p−1(Ω)

)
,

where P = P(x , hD; h) with leading semi-classical symbol p(x , ξ),
Ω ⊂ C. See [SjBook19]. Q can be the operator of multiplication
with a random linear combination of eigenfunctions of an auxiliary
self-adjoint differential operator.
In this talk we will not discuss resonances; there have been some
works with random perturbations and plenty open problems remain.
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Example.

Consider a finite difference operator on S1

P = sin(hD)◦(1+ae ix+ame
−ix+be2ix+bme

−2ix)◦sin(hD)+ce ix+cme
−ix ,

(2)

p = (1+ae ix+ame
−ix+be2ix+bme

−2ix)(sin ξ)2+ce ix+cme
−ix , (3)

for suitable values of the coefficients.
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Figure: Eigenvalues of Pδ = P + δQ as in (2), h = 0.0020944, N = 3000,
δ = 2.5× 10−9. ‖Q‖ = 147.0841.
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Figure: Eigenvalues of Pδ = P + δQ as in (2) ff., h = 0.0020944,
N = 3000, ‖Q‖ = 143.9731. δ = 2.5× 10−4.
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In this talk we discuss large Toeplitz matrices with random
perturbations, an interesting example of boundary value problems.
The first example is that of a large Jordan block:

A0 =



0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
. . . . ... .
0 0 0 0 ... 1
0 0 0 0 ... 0

 : CN → CN .

I D(0, 1) (the open unit disc) is a region of spectral instability
([Zw02]).

I We have spectral stability (a good resolvent estimate) in
C \ D(0, 1).

I σ(A0) = {0}.
Thus, if Aδ = A0 + δQ is a small (random) perturbation of A0 we
expect the eigenvalues to move inside a small neighborhood of
D(0, 1).
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In the special case when Qu = (u|e1)eN , where (ej)
N
1 is the

canonical basis in CN , the eigenvalues of Aδ are of the form

δ1/Ne2πik/N , k ∈ Z/NZ,

so if we fix 0 < δ � 1 and let N →∞, the spectrum “will
converge to a uniform distribution on S1”.
Davies and M. Hager [DaHa09] considered random perturbations
δQ = δ(qj ,k(ω)), where typically qj ,k ∼ NC(0, 1), independent.
They showed under quite general assumptions that with probability
close to one, most of the eigenvalues are close to the circle of
radius δ1/N .
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The angular distribution was not treated in [DaHa09]. In
[SjBook19], I did so, using the general methods that have been
developed for the case of elliptic PDE [Ha05],... . A. Guionnet,
P. Matchett Wood and O. Zeitouni [GuMaZe14] studied the
convergence of the counting measure. Both results show that the
eigenvalues have a tendency of accumulating uniformly along the
unit circle (when δ is neither too small nor too big). This is
another example of Weyl asymptotics, associated to the symbol

p(ξ) = e iξ on S1
ξ .
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Expected eigenvalue density inside. With Vogel [SjVo14], we have
investigated the expected eigenvalue distribution inside D(0, 1) in
cases when δ1/N ≈ 1, by adapting the methods of [Vo14] related
to classical works on zeros of random polynomials by M. Kac,
B. Shiffmann–S. Zelditch, cf. [HoKrPeVi09].
We showed roughly that with the same random perturbation, the
expected density of eigenvalues inside the unit disc is given up to
small errors by

1

2π

4

(1− |z |2)2
L(dz) + a small remainder, L(dz) = d<z d=z .

There is a general theoretical study of eigenvalue density away
from the main accumulation; C. Bordenave, M. Capitaine
[BoCa16].
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Numerical illustrations in the Jordan case.
N = 500, δ/

√
2 ranges from 10−11 to 0.02. First δ/

√
2 = 10−11:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

12 / 39



δ/
√

2 = 0.0075

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

13 / 39



δ/
√

2 = 0.03

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

14 / 39



Bidiagonal Toeplitz matrices.
Consider the bidiagonal N × N matrices:

P = PI =



0 a 0 .. .. 0
b 0 a .. .. 0
0 b 0 .. .. 0
.. .. .. .. .. ..
0 .. .. .. 0 a
0 0 .. .. b 0

 (4)

P = PII =



0 a b 0 .. .. 0
0 0 a b .. .. 0
0 0 0 a .. .. 0
.. .. .. .. .. .. ..
.. .. .. .. .. a b
.. .. .. .. .. 0 a
.. .. .. .. .. 0 0


, (5)

for N � 1, where a, b ∈ C \ {0}.
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Identifying CN ' `2([1,N]) ' `2
[1,N](Z) = the space of all

u ∈ `2(Z) with support in [1,N]), [1,N] = {1, 2, ...,N}, we have:

PI = 1[1,N](aτ−1 + bτ1) = 1[1,N](ae
iDx + be−iDx ), (6)

PII = 1[1,N](aτ−1 + bτ−2) = 1[1,N](ae
iDx + be2iDx ), (7)

where τk = τk denotes translation by k, τ = τ1.
The symbols of these operators are by definition,

PI(ξ) = ae iξ + be−iξ, PII(ξ) = ae iξ + be2iξ. (8)

E1 := PI(S
1), S1 ' R/2πZ is equal to the ellipse with focal points

±2
√
ab and semi-axes of length |a|+ |b| and ||a| − |b||.
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I The spectrum σ(PI) of the operator PI can be computed
explicitly and is contained in the focal segment
[−2
√
ab, 2
√
ab].

I The numerical range is contained in the convex hull of E1.

We consider the following random perturbation of P0 = PI

Pδ := P0 + δQω, Qω = (qj ,k(ω))1≤j ,k≤N , (9)

where 0 ≤ δ � 1 and qj ,k(ω) are independent and identically
distributed complex Gaussian random variables ∼ NC(0, 1).
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In [SjVo15] with Vogel, we considered P0 = PI, where a, b ∈ C
satisfy 0 < |b| < |a|. Let Pδ be as in (9). For δ in a reasonable
parameter range we showed that most of the eigenvalues are close
to the ellipse E1 and their distribution satisfies the natural Weyl
law. In [SjVo16] we also considered the expected density inside and
got an expression which is less explicit than in the Jordan case.
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Numerical illustrations in the bidiagonal case.
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Figure: The left hand side shows the image of S1 under the principal
symbol of case I (for the dashed ellipse we chose b = 0.5, a = 1 + i and
for the other ellipse b = 0.5, a = 0.5 + 0.5i). The right hand side is
similar but for the principal symbol of case II (for the dashed line we
chose b = 0.5, a = i and for the continuous line b = 0.5, a = 0.4i).
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Figure: The spectrum of PI with N = 500, a = 1 + i and b = 0.5
perturbed with a complex Gaussian random Matrix with coupling
constant δ = 10−5. The red line is the image of the unit circle S1 under
the symbol PI .
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2. Recent results

Let N± ∈ N = {0, 1, ...} with N+ + N− 6= 0. Let aj ∈ C,
−N− ≤ N+ with a±N± 6= 0 when N± = 0. Consider the operator

p(τ) :=

N+∑
−N−

ajτ
j , (10)

acting on functions on Z or on Z/MZ. The symbol of τ = e−iDx is
equal to 1/ζ, with ζ = e iξ and the symbol of p(τ) is given by the
meromorphic function

C 3 ζ 7→ p(1/ζ) =

N+∑
−N−

ajζ
−j . (11)
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We get the N × N Toeplitz matrix,

PN := 1[1,N]p(τ)1[1,N], (12)

acting on CN ' `2([1,N]) ' `2
[1,N](Z). For

A0, PI and PII,

p(1/ζ) is equal to

ζ, aζ + b/ζ and aζ + bζ2

respectively. Similarly, we write PN = 1Np(τ)1N and let PZ and
PZ/MZ denote p(τ), acting on functions on Z and Z/MZ
respectively. By Fourier series, we have

σ(PZ) = p(S1), σ(PZ/NZ) = p(S1
N),

where S1
N = {e2πik/N ; 1 ≤ k ≤ N}. We can view PN as a

uniformly finite rank perturbation of PZ/NZ.

22 / 39



Let PδN = PN + δQ, where Q = Qω = (qj ,k(ω))1≤j ,k≤N and
qj ,k(ω) ∼ NC(0, 1) are independent complex Gaussian random
variables with expectation 0 and variance 1. We consider the case
N � 1, 0 ≤ δ � 1.
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Counting eigenvalues in a fixed domain.
Let Ω b C be an open simply connected set with smooth boundary
∂Ω which is independent of N. We suppose that

(Ω1) ∂Ω intersects p(S1) in at most finitely many points;

(Ω2) the points of intersection are non-degenerate, i.e.

∂ζp 6= 0 on p−1(∂Ω ∩ p(S1)); (13)

(Ω3) ∂Ω intersects p(S1) transversally, in the following sense: for
each z0 ∈ ∂Ω ∩ p(S1) let γk ⊂ p(S1), k = 1, . . . , n denote the
mutually distinct segments of p(S1) passing through z0, i.e.
each γk is given by the image of a small neighborhood in S1

of a point in p−1(z0) ∩ S1. Then γk and ∂Ω intersect
transversally at z0.
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Theorem ([SjVo19a])

Let p, PδN , M = N+ + N− and Ω be as above. Let Ω be as above,
satisfying conditions (Ω1)–(Ω3) and pick a δ0 ∈]0, 1[. There exists
a constant C > 0, such that, for N > 1 sufficiently large, if

Ce−N
δ0/(2M) ≤ δ ≤ N−4

C
, (14)

then∣∣∣∣#(σ(PδN) ∩ Ω)− N

2π

∫
p−1(Ω)∩S1

LS1(dθ)

∣∣∣∣ ≤ O(Nδ0 logN). (15)

with probability

≥ 1−O(logN)
(
e−N

2
+ δ−Me−

1
2
Nδ0
)
. (16)
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We have a related result on the a.s. weak convergence of the
counting measure ξN = N−1

∑
λ∈σ(Pδ

N) δλ, for the eigenvalues, very

closely related to general results of the same type by A. Basak, E.
Paquette, O. Zeitouni [BaPaZe18].

Corollary ([SjVo19a])

Let δ0 ∈]0, 1[, and write M = N+ + N−. Then, there exists a
constant C > 0 such that if δ = δN satisfies (14),

Ce−N
δ0/(2M) ≤ δ ≤ N−4

C
,

then, almost surely,

ξN ⇀ p∗

(
1

2π
LS1

)
, N →∞, (17)

weakly, where LS1 denotes the Lebesgue measure on S1.

We also have a result about counting eigenvalues in thin
neighborhoods of p(S1).
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Figure: The pictures on the left hand side shows the spectrum of the
Toeplitz matrix PN given by the symbol p(1/ζ) = 2iζ−1 + ζ2 + 7

10ζ
3 and

the right hand side shows the spectrum of Pδ, with δ = 10−12. The red
line shows the symbol curve p(S1). Nleft = 160, Nright = 500
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Figure: The pictures on the left hand side shows the spectrum of the
Toeplitz matrix PN given by the symbol
p(1/ζ) = 2ζ−3 − ζ−2 + 2iζ−1 − 4ζ2 − 2iζ3 and the right hand side shows
the spectrum of a random perturbation Pδ, with coupling constant
δ = 10−12. The red line shows the symbol curve p(S1).

Recently Basak and Zeitouni [BaZe19] have given quite a technical
description of the expected eigenvalue density away from p(S1) for
general “finite band” Toeplitz matrices. As their examples they
recover (basically) the results of [SjVo14], [SjVo16].

28 / 39



An extension to less regular symbols

Now consider

p(τ) =
+∞∑
−∞

aντ
ν ,

where ∑
|νaν | <∞

Let
PN = 1[0,N[p(τ)1[0,N[ : `2([0,N[)→ `2([0,N[).

We have the symbol p(1/ζ) ∈ C 1(S1). γ = p(S1) is a C 1-curve.
Let Ω be domain in C as above, satisfying (Ω1)–(Ω3). For
simplicity we add the assumption

(Ω4) γ has no point of self intersection at γ ∩ ∂Ω.
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Theorem ([SjVo19b])

Let δ0 ∈]0, 1[, δ1 > 3/2. If e−N
δ0 ≤ δ � N−δ1 , then ∃ εN = o(1),

N →∞, such that∣∣∣∣#(σ(PδN) ∩ Ω)− N

2π

∫
p−1(Ω)∩S1

LS1(dθ)

∣∣∣∣ ≤ εNN, (18)

with probability

≥ 1− e−N
δ0 . (19)

We have the corresponding corollary about the weak convergence
of the counting measure.

R. Movassagh has informed us about his work with L.P. Kadanov
[MoKa16] about Toeplitz operators with singular symbols. This
seems to open new horizons.
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3. Some elements of the proofs

As in [SjVo14, SjVo15, SjVo16] we make a Grushin (Feschbach)
reduction to a matrix of fixed size independent of N. In the cited
works, the reduction depends very much on the type of the
operator. We now have a unified approach.
Let J = [−N−,N+[ be an interval in Z of length N+ + N− =: M.
Then Z/(N + M)Z = J ∪ IN , where IN is an “interval” of “length”
#IN = N. We have PN ' PIN . Identify
`2(SN+N++N−) ' `2(IN)⊕ `2(J). Then

PZ/(N+M)Z − z = PN(z) =

(
PIN − z RN

−
RN

+ R+−(z)

)
(20)

where

PIN − z = 1IN (p(τ)− z)1IN , R
N
− = 1INp(τ)1J ,

RN
+ = 1Jp(τ)1IN , R

N
+− = 1J(p(τ)− z)1J .
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PZ/(N+M)Z is normal with spectrum equal to p(S1
N+M), so if z is

outside that set, PN(z) is invertible with inverse(
EN(z) EN

+ (z)
EN
− (z) EN

−+(z)

)
, EN

−+(z) = 1J(PZ/(N+M)Z − z)−11J .

Define PδN(z) by replacing PN with PδN in (20). It is bijective for
z 6∈ p(S1

N+M) when δ is small enough. Let E δ−+(z) be the lower
left entry of the inverse. We can study the determinant via

ln | det(PδN − z)| = ln | detPδN(z)|+ ln | detE δ−+(z)|,

and use that E δ−+(z) has a perturbative expansion:

E δ−+(z) = E−+(z)− δE−QE+ + ”O(δ2)”.

We also need

Lemma
The M largest singular values of E+ and of E− are bounded from
below by 1/Const., uniformly in N for N � M.
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The proof is elementary and uses in an essential way that p(τ) in
(10) is a finite difference operator with aN+ , a−N− 6= 0.

In the proof of Theorem 3.1, we construct a similar Grushin
problem with a sufficiently large interval J. The lemma will not
necessarily hold, but we can formulate a second Grushin problem
for E−+, related to its small singular values. The two Grushin
problems can be composed in the natural way and gives a new one
for which the lemma holds.

***

Thank you for your attention.
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Bon anniversaire André!
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