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Introduction

Motivation : Sub-exponential time-decay of quantum dynamics.
Study the Fokker-Planck operator P by scattering method:
P:v-VW—VWQyVV—AV+%WF—g
with W € C'(R”; R). The Maxwell distribution
m(x,v) = (2m)f e HE W)

always verifies Pm = 0. If n =3 and W/(x) decreases quickly, then
(W, 2015)

e P = 1(mﬁm+afm,t%+m. (1)

Art



Motivation

Question raised in [W., 2015]. Assume W(x) ~ (x)” for some
0 < p < 1. Can one prove the return to equilibrium

e =(m )m+0(e ") as t— 4o0?

Here W(x) is normalized by [, e~"®dx = 1. (The normalization fr
W(x) usedin (1) is: W(x) — 0 as |x| — o).

An affirmative answer is obtained by T. Li and Z. Zhang (Sci. China
Math. (2018) ).



Motivation

The associated Witten Laplacian is given by

Ay = A+ UKx), UX) = %|VW(X)|2 - %AW(X).

If W(x) ~ (x)* for some 0 < p < 1 and for |x| large, then

U(x) > Mz(%p) for |x| large. In this case, —A is a compactly
supported perturbation of a model operator —A + Vy(x) where
Vo(x) > ﬁ forall x € R”, where ¢ > 0and u=1—p €]0,1[ and
zero is an eigenvalue of —Ay embedded in its essential spectrum.
Sometimes, it may be necessary to include other terms which are
non-selfadjoint.

This leads us to study a class of non-selfadjoint operators with zero
as embedded eigenvalue.



Schrédinger operators with positive potential

If H=—A+ V(x) where V(x) is real and
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then
@ D. Yafaev (1982): if n =1 and V is analytic, then Vx € C3°(R),

x()e My (x) = O(e~e1™ ), teRr.
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@ Method of Markov processes: P. Cattiaux, A. Guillin, - --.
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The model operator

We first recall some known results on Gevrey estimate of the
resolvent. Let Hy be an operator of the form

n
= 0xa(x)oy +Zb/ )y, + V(x), )
ij=1

whereﬂa"f(x), bj(x) and V(x) are complex-valued functions. Suppose
that a’, b; € C} and that there exists ¢ > 0 such that

Re (a'(x)) > cl,, VYx eR". (3)

Assume that V is relatively bounded w.r.t. —A with relative bound
zero.
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The model operator

Assume that there exists some constants 0 < u < 1 and ¢y > 0 such
that

[(Hou, u)| > co([[Vul® + [[(x)"*ul®), forallue H?,  (4)
sup[(x)"bj(x)| < oo, j=1,---,n. (5)
X

(4) is called weighted coercive condition. Assume in addition
Re Hy > 0. Then (4) is satisfied by Hy — A for all A < 0 with the same
constant cp.
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Quantum resonances and sub-exponential time-decay

A uniform energy estimate

For s € R, denote

2
2
ps(x) = (1+ ?g)s/ )

where Rs = M(s>ﬁ for some M > 1 independent of s.

Lemma 1

Under the above conditions on Hy, there exists some C, M > 0 such
that

1) ™ ps () ull + IV (es(x)u)l| < Cll ()" es(x)(Ho = Aul| (6)

forany s € R, A < 0 and u € {f € H?(R"); (x)Isl+rf € [2}.

Consequence. Let Ry()\) = (Hy — A)~' for A € o(Hp). Then
(0™ esRo(A)p—s (O™ [ + [ V(esRo(Mp-s)(X) || < C
uniformly in A < 0 and s € R.
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Gevrey estimates of the resolvent

Under the assumptions (4) and (5), Hy is bijective from D(Hy) to
R(Hp). Let Ry(0) : R(Hy) — D(Hp) be its algebraic inverse. Denote

L3S = [2(RD; (x)%SdX).

Ry(0) is a densely defined and closed operator, continuous from L2$
to L25=2# for any s € R. Thus Ry(0)N : [2S — [?5-21N is well defined
for any s € R. One has

_ : —2Np N _ Ny _
s ZEQ}[;THOM (Ro(2)™ — Ro(0)™) =0,

where Q(9) = {z;|argz| > 5 +0},6 > 0.
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Gevrey estimates of the model resolvent

From Lemma 1, we deduce that

[(x) " psRo(N)p—s(X) ]| + [V(psRo(N)p—s)(x)"[| < C  (7)

uniformly in A <0 and s € R.

For any a > 0, there exists C, > 0 such that

&2 Ro(AN|| + [ Ro(A) Ve | < CH+ NN YN > 1.

uniformly in X < 0. Here v = 2.
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Gevrey estimates of the model resolvent

From Theorem 2, one deduces that for any x € C3°(R"), xRo(2)
belongs to the Gevrey class G+ (Q(5)) :

Ix(x)RM(2)|| < ¢, CVNIN,

uniformly in z € Q(6) and N € N. Here F{(N)( z)= dZN Ro(z), C>0is
independent of y and 1 + v = 1+“ If Hp is in addition selfadjoint, one

can take Q(¢) as
Q(0) ={z;|arg z| > ¢}.
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Quantum Coulomb Hamiltonian

Example. Consider Coulomb Hamiltonian Ho = —A + 5, in L*(R®),
ceR. Let x € C(R?). If ¢ > 0, then Hy > 0 and one has

X(Ho —2)""x € C3°()

where Q1 = {|z] < 1,z € Ry} (S. Nakamura, 1994).

If c < 0, one has
X(Ho — 2)"'x € C°(Q4)

where Q4 = {|z] < 1,0 < +argz < 7 — ¢} (S. Fournais and E.
Skibsted (2004)).
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Gevrey-3 estimates

If ¢ > 0, Hy satisfies the weighted coercive condition with ;. = .

Therefore

Ro(2) € GO(Q(5))
In addition, the dilated operator

ce?

Ho(0) = e %A +

still satisfies the weighted coercive condition if |#| small and Im 6 > 0.
We deduce from Theorem 2 and the numerical range of Hy(#) that for
Im 6 >0, Ry(z,0) = (Hy(0) — 2) ' € GO(Qy),

QW={zeC,—g<argz < 32—7T}

for some ¢y = co( Im 6) > 0.
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Gevrey-3 estimates

If ¢ < 0, Theorem 2 does not apply to Hp, but applies to the dilated
—6

operator Ho(¢) = e72’A + %7~ as soon as Im 6§ > 0, because for

0=ir

. u u 2
{u, Ho(im)u)| = {IVUII4 +2ccos7||Vul? - | x| 7+ ¢ x| ||4} :

We deduce from Theorem 2 that for Im 8 > 0,
Ro(2,0) = (Ho(8) — 2)~" € G¥(Qs)

where Q3 = {ze€ C;—¢y <argz < m — ¢}
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Gevrey-3 estimates

By using analytic distortion outside support of x and comparing
xRo(2)x with xRy(z,6)x, one can prove

Proposition 3

Letn=3, Hy=—A+ 5 withc € R* and x € C°(R3). If ¢ > 0, one
has

xRo(2)x € 6¥(Q)
and if c < 0 one has

xRo(2)x € 6®(Q).
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Perturbed operator

Let Hy verify Conditions of Theorem 2. To study quantum resonances
near 0, we need some additional conditions. To be simple, consider
the case n =3 and Hy = —A + Vy(x) with

a—ib a—ib

)

with 11 €]0,1][, a, b > 0 with a+ b > 0. We can also take
Vo(x) = Vi(x) — iVa(x) with Va(x) > ¢(x)~2* with V; both dilation and
distortion analytic. Let

H=—A+ V(x) = Ho + W(x)

a compactly supported perturbation of Hp:
W=V-We Lcomp( ; C). We want to study large-time expansion
of e=™ as t — 4oc.
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Positive resonances

Definition 4

A number A > 0 is called outgoing resonance of H = —A + V if —1is
an eigenvalue of the compact operator Ry(\ + i0)W in L2~5, s > %
Denote r, (—A + V) the set of outgoing resonances of H. For

A € ry(H), define m4 () as the algebraic multiplicity of eigenvalue —1
of the compact operator Ry(A + i0) W. Similarly, one can define
incoming positive resonances.

If V is of short-range, one can show that A > 0 is a positive
resonance of H if and only if (H — A)u = 0 admits a non-trivial
solution verifying the outgoing Sommerfeld radiation condition.
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Meromorphic extension of R(z)

The cut-off resolvent xyR(z)x can be meromorphically extended from
C. into the region

O=C\{z;Rez>C|Imz|",Imz< -0Rez}, 7>0.

Quantum resonances located in |0, +oo[ are outgoing positive
resonances of H and those in C U] — oo, 0[ are eigenvalues of H.
Incoming positive resonances are invisibles in the meromorphic
extension of xR(z)y from C,..
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Threshold eigenvalue in non-selfadjoint case

Assume that zero is an eigenvalue of H. Then —1 is an eigenvalue of
compact operator Ry(0)W. Let IN_; denote the Riesz projection of
eigenvalue —1 of Ry(0)W. Set

w(z) = det(N_1(1 + Ro(2) W)N_1), 2 & o(Ho).

w(Zz) is a Gevrey function up to z = 0. Assume that there exist k € N*
and wy # 0 such that

w(z) = w2 + O(|2|*T), (8)

for z near 0 and Re z < 0.

If H is selfadjoint, (8) is always satisfied with k the multiplicity of
eigenvalue zero of H.
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Sub-exponential time-decay estimates

Theorem 5

(a). The set of quantum resonances of H in O is at most finite. In
particular, the numbers of complex eigenvalues of H in O and of
outgoing resonances r,(H) of H are at most finite.

(b). If zero is an eigenvalue of H, suppose in addition Condition (8) is
satisfied. Then there exists ¢ > 0 such that for any x € C3°(R"),

HX(efitH_ Z efitHl—l)\_l—lo Z efltuP XH < C e —ctP

A€aq(H)NC4 ver.(H)

fort > 0. Here 8 = } and ¢ > 0 is independent of .
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Sub-exponential time-decay estimates

In the above Theorem, 11, is the Riesz projection associated with the
discrete eigenvalue )\ of H, Py(t) is contribution from zero eigenvalue

k—

—_

Mo,
j=0

with Rank Mg ; < m, m being the algebraic multiplicity of —1 as
eigenvalue of Ry(0)W. P, (t) is polynomial in t with coefficients of
rank < m, (v).

Non-trivial question. How to check the condition (8) and to calculate
more explicitly contributions from threshold eigenvalue and positive
resonances ?
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Figure: Meromorphic extension of YR(z)x and the contour I used for e~ .
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Sub-exponential time-decay estimates

The main step in the proof of Theorem 5 is to prove the resolvent
R(z) = (H — z)~" admits an expansion of the form

k
R(z)=>_z7R_j+n(2)
j=1

with xro(2)x € G0+ in {|z| < 6§, -6 < argz < 7 + 6}.
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Comments on Condition (8)

Assume that zero eigenvalue of H is geometrically simple. Then
@ If there exists an associated eigenfunction g of H such that

| (eotyie 1. ©
then Condition (8) is satisfied with k = 1 and one has
Mo(t) =Moo = (- Jeo)wo.

Here J is the complex conjugation J : f(x) — f(x).
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Comments on Condition (8)

Assume that zero eigenvalue of H is geometrically simple. Then
@ If there exists an associated eigenfunction g of H such that

| (eotyie 1. ©
then Condition (8) is satisfied with k = 1 and one has
Mo(t) = Moo = (-, Jeo)wo

Here J is the complex conjugation J : f(x) — f(x).
@ If (9) is not satisfied and if Condition (8) is satisfied for some K,
then k > 2 and MMy x_+ is of rank one and is given by

|_|07k_1 = <'a J¢0>w0

for some eigenfunction 1 associated with zero eigenvalue of H-.
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Threshold spectral analysis

Eigenvalue —1 of Ry(0) W is always semisimple if H is selfadjoint. It is
no longer the case if H is non-selfadjoint.

Let p be the algebraic multiplicity of eigenvalue —1 of Ry(0)W. The
point of calculation is to show that there exists a nice basis b for the
range of 7_y s.t.

Mb(1 + Ro(Z)W)

0 1 0 O a11 a1p
o 0 1 : : :
e S - RNt
: 1
0 0 ap1 app

where a4 is related to (9). Assumption (8) is satisfied with k = 1 iff
ap1 7é O
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Comments on Condition (8)

A recent result of Maha Aafarani (PhD student, Nantes) implies that if
zero eigenvalue of H is of multiplicity m and if there exists a basis
{¢1,-+ ,pm} of eigenfunctions such that

det({j, Jok))1<jk<m # O, (10)

where J is complex conjugaison, then Condition (8) is verified with
k=mandonehasly;=0,j=1,---,m—1and g is given by

m

Moo =Y (- Juy)uy

j=1

where {¢;;j =1,--- , m} is a basis of the eigenspace of H associated
with eigenvalue zero verifying
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A three-body operator

Consider now N-body problems. To simplify notation, consider only
atomic-type three-body Schrédinger operators

H= =Dy, — Ay, + V4 (X1) + V2(X2) + V3(X1 — Xg)7 Xj € R"

where Vj(y) is real, relatively compact with respect to —A,, in L2(R")
and there exists some constant i, > 0 such that

0y Vi(y)| < Caly| 21 (11)

for y outside some compact of R” and for |o| < 2. This is the
Hamiltonian for a quantum system consisting of three particles
numbered by {0, 1,2}, where particle 0 is of infinite mass.
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A three-body operator

An example is the Coulomb Hamiltonian

ai Q> a3
H= Dy — D+ g 2y B
TR x| el X — xe

x; € R3.
If g; > 0forj=1,2,3, then H verifies the weighted coercive condition
and Theorem 2 holds. For an atomic-type three-body operator, it is
natural to assume that g; < 0 for j = 1,2 and g3 > 0. We want to
show that the method used before can be modified to establish
Gevrey estimate of the resolvent near the lowest threshold under the
condition that

gs + max{qgi, g2} > 0.
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A three-body operator

Let H be a general atomic type three-body operator with V;(y)
verifying (11). Let H;, j = 1,2, 3, be subhamiltonians of H
corresponding to two-cluster decomposition:

a1 ={(01)(2)},a = {(02)(1)}, as = {(12)(0) }.
In Jacobi coordinates,
I-I/ = _AX/‘ + V](X/)> j: 1,2, H3 = —2Ay + V3(y)7

where y = x1 — Xo.
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A three-body operator

One has

€y = infoess(H) = j:r111523info(klj-).
Assume that ey is a unique two-cluster threshold of H, say
e =info(Hy) <0, info(H) > e, j=2,8. (12)

Let po(x1) be a normalized eigenfunction of Hy = —A,, + Vi(xq)
associated with gy and

I(x2) = (ho, po)i2(ry, )

where /1 (X1,X2) = V2(X2) + V3(X1 — Xg).
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Theorem 6

Denote x = x, € R". Assume that e, is a unique two-cluster
threshold and there exist some constants ¢ > 0 and u €]0, 1]

c
| x|2

I(x) >

(13)
for |x| >> 1. Then H has at most a finite number of eigenvalues in
] — o0, e[ and

Mg,

Ff(Z) - _Z— €p

+ R1(Z) (14)

where e=3%)' " Ry (z) € ¢UHE(Q).
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Here Q ={z e C;|z— e < d,|arg(z— e)| > 5 > 0}. If gy is an
eigenvalue of H, Mg, is the associated eigenprojection; otherwise
Mg, = 0. In atomic-type three-body Coulomb problem, one has

I(x) = qZ‘iqu +0(Ix72),  Ix| >> 1.

Therefore all conditions of Theorem 6 are satisfied with y = } if
g1 <@ <0andgs + g > 0.

Remark The case qi = g2 < 0 and gz + @2 > 0 can also be treated
by the method of E.Skibsted-W. for spectral analysis near arbitrary
two-cluster thresholds. In this case, E_(z) is a3 x 3 matrix-valued
operator.
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From Theorem 6, we obtain large-time expansion for solutions to the
associated heat equation.

Corollary 7

Under the conditions of Theorem 6, for any a > 0, there exist some
constants C, ¢ > 0 such that

He—a(XV*“(e—”" — Z e My + e ®Mg,)ull < Ce_teo_CtE”U”
)\Go’d(H)

for any u € L?(R?").
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A reduction by Grushin method

The main task for the proof of Theorem 6 is to show Theorem 2 still
holds when the model resolvent (Hy — \)~" is replaced by

(Ho + Woo(\) — M)~ " where W..()\) is a non-local operator arising
from Grushin reduction.

Let po be a normalized eigenfunction of H; associated with ey and

F = {@o(x1)f(x2); f € L3(R")}. Denote M : L2(R?") — F the

orthogonal projection and I’ =1 — . Let H' = MHI’. Then
inerss(Hl) > 907

(see W., 2004). There are two cases:

(a). €p Q O'd(H/); (b) € € O'd(H/).
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A reduction by Grushin method

Consider the simpler case ey & o4(H'). Then R'(z) = (H' —z)~ ' is
holomorphic for z near ey. By Grushin method, one can establish a
representation formula for R(z) = (H — z)™"

R(z) = E(2) — E{(2)E_(2) "E_(2) (15)
where
E(z) = R(2),
Ei(z) = —R(2)h(po®-)+ (po®"),
E_(2) = (- %0)1— (w0, hR(2))1,
1(2) = (z—€0) = (—Lx +1(x2)) + (hR'(2) (0 ® ), ¥0)1-

where |, = Vg(Xg) + V3(X1 — Xg), I(Xz) = (I1 @0,@0)1 and (', ')1 denotes
scalar product in xq variables.
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A reduction by Grushin method

E(z) and E..(z) are holomorphic for z near e;. We need to study
E_(z)7'.Set A=z — gy and x = x,. Write E_,(z) as

E_(e0+ ) =X—(=Ax+ V(N),
where V() = I(x) + W(X) with
W(N) = (o, hB' (A + €0) 1 (0 ® ). (16)
W(X) is holomorphic for A near 0 and
1) 2 W) ()2 < C

uniformly in \ near 0, because MM = O((x)~1—2#).
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Gevrey estimates for E_, (\ + &)~

To simplify presentation, assume that g, is not an eigenvalue of H.
Then 0 is not an eigenvalue of E__ (ey). We want to prove Gevrey
estimates for E_ (e + \)~'. If the term W()\) were absent, under the
condition (13) we can split —A + /(x) as

—A+ I(x) = Hy + U(x)

where Hy verifies condition of Theorem 2 and U(x) is of compact
support. Gevrey estimates for (—A + / — \)~! follows from Theorem 2
and the equation

(A +1—=X)""=Ry(N)(1 + URy(\)) ",

if zero is not eigenvalue of —A + /. This argument can not be applied
to E_,(\+ €)', because W()) is non-local and has no sufficient
decay.



Atomic-type three-body operators
Gevrey estimates of the resolvent near the lowest threshold

Gevrey estimates of the resolvent in N-body problems Ideas of proof

Gevrey estimates for E_, (A + g) "

To treat the term W()\), we modify the proof of Theorem 2 from the
very beginning and exploit the analyticity of W()\) in \. Let ¢ be the

weight function used in Lemma 1: p5(x) = (1 + I%I:)s/z where
Rs = M(s) ™.

Forr,r' e R withr +r' <2+ 4u, one has

100 s W(A)p—s(x)" [ < C

uniformly in s € R and || < 6.
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Gevrey estimates for E_, (\ + &)~

Proof. Lemma 8 follows from

1
— S )= H +0O(+

psH'¢_s=H + O

uniformly in s and from the fact ey belongs to the resolvent set of H'.
O

Let xa(x) = x1(%), R > 1, where yy € C=(R") such that y(x) = 0 if
|x] <1and x1(x)=1if |x| > 2. Set

FA) = —Ax+1—xp(xX)+xaV(N). (17)

F(\) = Ho + xgW(X) with Hy = —A + 1 — xg(x) + xr/(x) verifying
conditions of Lemma 1.



Atomic-type three-body operators
Gevrey estimates of the resolvent near the lowest threshold

Gevrey estimates of the resolvent in N-body problems Ideas of proof

Gevrey estimates for E_, (A + g) "

Lemma 9

Assume (13) for some p €]0, 1[. There exist some constants
M. R > 0 such that

1) ™ psull + [V (wsu)]| < ClI(X) ps(F(A) = A)ul|

uniformly ins e R, A €] — 6,0l and u € S.

Lemma 9 follows from Lemma 1 applied to Hy and Lemma 8. In the
following, R > 1 is fixed such that Lemma 9 holds.
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Gevrey estimates for E_, (A + )"

Lemma 9 shows that G()\) = (F(\) — )~ verifies
100 ™ s GA)p—s(X) || + Vs G(M)p-s(x) [ < C

uniformly in A €] — §,0] and s € R. By method of commutator, we
obtain
1(x) "2 0sG(\)o—sll < C (18)

uniformly in s and A.
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Gevrey estimates for E_, (\ + &)~

A heavy task in the proof of Theorem 6 is to show the following

Theorem 10

There exist C, > 0 such that forany r > 0, N e N and X €] — §,0],
one has

106) =24 (xu,r) = BNED G () (o)™ |
< CN*YINI((2N + ryp)™N (19)
Here

Xy = o With B, = M((2N + 1)) ™7

N,r

and (xn./) = (1 + |xn.,[2)2.
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Proof of Theorem 10

Proof. The case N =0 and r > 0 of Theorem 10 follows from (18)
with s = ru. In the general case N > 0 and r > 0, using

G = (GO = GxaW' (NG,
we prove by induction
106) 2% ) = BN G (A) (v, ) |
< CNTINI(2N + r)u)™N

with Cy < Cny1 < CN(1 + N‘ic*W) O
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Proof of Theorem 6

Note

”<XN7’_>(2N+r)uefa<)()1_“HLoo < AQLH«
Theorem 10 gives

[

x)"Te @ T G (\)(x)T|| < CNTHTNIUN + 7N
a

for > 0and N € N. Theorem 6 in the case ey € op(H) Uoq(H') is
deduced from the above estimate and

R(z) = E(2)-E(2)E+(2)"'E_(2)
E (teo) = —G( + UNGN) ™,

where U(\) = (1 — yg)(V(X) — 1). Note that U(\)e#*®)' " is bounded
if a> 0 is small. O
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Happy birthday André !
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