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Introduction

Motivation : Sub-exponential time-decay of quantum dynamics.

Study the Fokker-Planck operator P by scattering method:

P = v · ∇x −∇W (x) · ∇v −∆v +
1
4
|v |2 − n

2

with W ∈ C1(Rn;R). The Maxwell distribution

m(x , v) = (2π)
n
4 e−

1
2 ( v2

2 +W (x))

always verifies Pm = 0. If n = 3 and W (x) decreases quickly, then
(W, 2015)

e−tP =
1

4πt 3
2

(〈m, ·〉m + O(t−ε)), t → +∞. (1)
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Motivation

Question raised in [W., 2015]. Assume W (x) ' 〈x〉ρ for some
0 < ρ < 1. Can one prove the return to equilibrium

e−tP = 〈m, ·〉m + O(e−at
ρ

2−ρ
) as t → +∞?

Here W (x) is normalized by
∫
Rn e−W (x)dx = 1. (The normalization fr

W (x) used in (1) is: W (x)→ 0 as |x | → ∞).

An affirmative answer is obtained by T. Li and Z. Zhang (Sci. China
Math. (2018) ).
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Motivation

The associated Witten Laplacian is given by

−∆W = −∆ + U(x), U(x) =
1
4
|∇W (x)|2 − 1

2
∆W (x).

If W (x) ∼ 〈x〉ρ for some 0 < ρ < 1 and for |x | large, then
U(x) ≥ c

|x|2(1−ρ) for |x | large. In this case, −∆W is a compactly
supported perturbation of a model operator −∆ + V0(x) where
V0(x) ≥ c

〈x〉2µ for all x ∈ Rn, where c > 0 and µ = 1− ρ ∈]0,1[ and
zero is an eigenvalue of −∆W embedded in its essential spectrum.
Sometimes, it may be necessary to include other terms which are
non-selfadjoint.

This leads us to study a class of non-selfadjoint operators with zero
as embedded eigenvalue.
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Schrödinger operators with positive potential

If H = −∆ + V (x) where V (x) is real and

c
〈x〉2µ

≤ V (x) ≤ C
〈x〉2µ

, µ ∈]0,1[,C, c > 0,

then
D. Yafaev (1982): if n = 1 and V is analytic, then ∀χ ∈ C∞0 (R),

χ(x)e−itHχ(x) = O(e−a|t|
1−µ
1+µ

), t ∈ R.

S. Nakamura (1994): n ≥ 1, ∀χ ∈ C∞0 (Rn),

χ(
|x |

t
1

1+µ

)e−tH = O(e−at
1−µ
1+µ

), t > 0.

Method of Markov processes: P. Cattiaux, A. Guillin, · · · .
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The model operator

We first recall some known results on Gevrey estimate of the
resolvent. Let H0 be an operator of the form

H0 = −
n∑

i,j=1

∂xi a
ij (x)∂xj +

n∑
j=1

bj (x)∂xj + V (x), (2)

where aij (x), bj (x) and V (x) are complex-valued functions. Suppose
that aij ,bj ∈ C1

b and that there exists c > 0 such that

Re (aij (x)) ≥ cIn, ∀x ∈ Rn. (3)

Assume that V is relatively bounded w.r.t. −∆ with relative bound
zero.
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The model operator

Assume that there exists some constants 0 < µ < 1 and c0 > 0 such
that

|〈H0u,u〉| ≥ c0(‖∇u‖2 + ‖〈x〉−µu‖2), for all u ∈ H2, (4)
sup

x
|〈x〉µbj (x)| <∞, j = 1, · · · ,n. (5)

(4) is called weighted coercive condition. Assume in addition
Re H0 ≥ 0. Then (4) is satisfied by H0 − λ for all λ ≤ 0 with the same
constant c0.
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A uniform energy estimate
For s ∈ R, denote

ϕs(x) = (1 +
|x |2

R2
s

)s/2,

where Rs = M〈s〉
1

1−µ for some M > 1 independent of s.

Lemma 1

Under the above conditions on H0, there exists some C,M > 0 such
that

‖〈x〉−µϕs(x)u‖+ ‖∇(ϕs(x)u)‖ ≤ C‖〈x〉µϕs(x)(H0 − λ)u‖ (6)

for any s ∈ R, λ ≤ 0 and u ∈ {f ∈ H2(Rn); 〈x〉|s|+µf ∈ L2}.

Consequence. Let R0(λ) = (H0 − λ)−1 for λ 6∈ σ(H0). Then

‖〈x〉−µϕsR0(λ)ϕ−s〈x〉−µ‖+ ‖∇(ϕsR0(λ)ϕ−s)〈x〉−µ‖ ≤ C

uniformly in λ < 0 and s ∈ R.
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Gevrey estimates of the resolvent

Under the assumptions (4) and (5), H0 is bijective from D(H0) to
R(H0). Let R0(0) : R(H0)→ D(H0) be its algebraic inverse. Denote

L2,s = L2(Rn
x ; 〈x〉2sdx).

R0(0) is a densely defined and closed operator, continuous from L2,s

to L2,s−2µ for any s ∈ R. Thus R0(0)N : L2,s → L2,s−2µN is well defined
for any s ∈ R. One has

s − lim
z∈Ω(δ),z→0

〈x〉−2Nµ(R0(z)N − R0(0)N) = 0,

where Ω(δ) = {z; |arg z| > π
2 + δ}, δ > 0.
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Gevrey estimates of the model resolvent

From Lemma 1, we deduce that

‖〈x〉−µϕsR0(λ)ϕ−s〈x〉−µ‖+ ‖∇(ϕsR0(λ)ϕ−s)〈x〉−µ‖ ≤ C (7)

uniformly in λ ≤ 0 and s ∈ R.

Theorem 2

For any a > 0, there exists Ca > 0 such that

‖e−a〈x〉1−µ

R0(λ)N‖+ ‖R0(λ)Ne−a〈x〉1−µ

‖ ≤ CN+1
a NγN ,∀N ≥ 1.

uniformly in λ ≤ 0. Here γ = 2µ
1−µ .
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Gevrey estimates of the model resolvent

From Theorem 2, one deduces that for any χ ∈ C∞0 (Rn), χR0(z)
belongs to the Gevrey class G(1+γ)(Ω(δ)) :

‖χ(x)R(N)
0 (z)‖ ≤ CχCNN!NγN ,

uniformly in z ∈ Ω(δ) and N ∈ N. Here R(N)
0 (z) = dN

dzN R0(z), C > 0 is
independent of χ and 1 + γ = 1+µ

1−µ . If H0 is in addition selfadjoint, one
can take Ω(δ) as

Ω(δ) = {z; |arg z| > δ}.
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Quantum Coulomb Hamiltonian

Example. Consider Coulomb Hamiltonian H0 = −∆ + c
|x| in L2(R3),

c ∈ R. Let χ ∈ C∞0 (R3). If c > 0, then H0 ≥ 0 and one has

χ(H0 − z)−1χ ∈ C∞b (Ω1)

where Ω1 = {|z| < 1; z 6∈ R+} (S. Nakamura, 1994).

If c < 0, one has
χ(H0 − z)−1χ ∈ C∞b (Ω±)

where Ω± = {|z| < 1,0 < ±arg z < π − δ} (S. Fournais and E.
Skibsted (2004)).
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Gevrey-3 estimates

If c > 0, H0 satisfies the weighted coercive condition with µ = 1
2 .

Therefore
R0(z) ∈ G(3)(Ω(δ))

In addition, the dilated operator

H0(θ) = e−2θ∆ +
ce−θ

|x |

still satisfies the weighted coercive condition if |θ| small and Im θ > 0.
We deduce from Theorem 2 and the numerical range of H0(θ) that for
Im θ > 0, R0(z, θ) = (H0(θ)− z)−1 ∈ G(3)(Ω2),

Ω2 = {z ∈ C;−c0 < arg z <
3π
2
}

for some c0 = c0( Im θ) > 0.
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Gevrey-3 estimates

If c < 0, Theorem 2 does not apply to H0, but applies to the dilated
operator H0(θ) = e−2θ∆ + ce−θ

|x| , as soon as Im θ > 0, because for
θ = iτ

|〈u,H0(iτ)u〉| =

{
‖∇u‖4 + 2c cos τ‖∇u‖2 · ‖ u

|x | 12
‖2 + c2‖ u

|x | 12
‖4

} 1
2

.

We deduce from Theorem 2 that for Im θ > 0,

R0(z, θ) = (H0(θ)− z)−1 ∈ G(3)(Ω3)

where Ω3 = {z ∈ C;−c0 < arg z < π − δ}.
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Gevrey-3 estimates

By using analytic distortion outside support of χ and comparing
χR0(z)χ with χR0(z, θ)χ, one can prove

Proposition 3

Let n = 3, H0 = −∆ + c
|x| with c ∈ R∗ and χ ∈ C∞0 (R3). If c > 0, one

has
χR0(z)χ ∈ G(3)(Ω2)

and if c < 0 one has

χR0(z)χ ∈ G(3)(Ω3).
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Perturbed operator

Let H0 verify Conditions of Theorem 2. To study quantum resonances
near 0, we need some additional conditions. To be simple, consider
the case n = 3 and H0 = −∆ + V0(x) with

V0(x) =
a− ib
〈x〉2µ

or
a− ib
|x |

,

with µ ∈]0,1[, a,b ≥ 0 with a + b > 0. We can also take
V0(x) = V1(x)− iV2(x) with V2(x) ≥ c〈x〉−2µ with Vj both dilation and
distortion analytic. Let

H = −∆ + V (x) = H0 + W (x)

a compactly supported perturbation of H0:
W = V − V0 ∈ L∞comp(R3;C). We want to study large-time expansion
of e−itH as t → +∞.
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Positive resonances

Definition 4

A number λ > 0 is called outgoing resonance of H = −∆ + V if −1 is
an eigenvalue of the compact operator R0(λ+ i0)W in L2,−s, s > 1

2 .
Denote r+(−∆ + V ) the set of outgoing resonances of H. For
λ ∈ r+(H), define m+(λ) as the algebraic multiplicity of eigenvalue −1
of the compact operator R0(λ+ i0)W . Similarly, one can define
incoming positive resonances.

If V is of short-range, one can show that λ > 0 is a positive
resonance of H if and only if (H − λ)u = 0 admits a non-trivial
solution verifying the outgoing Sommerfeld radiation condition.
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Meromorphic extension of R(z)

The cut-off resolvent χR(z)χ can be meromorphically extended from
C+ into the region

O = C \ {z; Re z ≥ C| Im z|τ , Im z ≤ −δ Re z}, τ > 0.

Quantum resonances located in ]0,+∞[ are outgoing positive
resonances of H and those in C+∪]−∞,0[ are eigenvalues of H.
Incoming positive resonances are invisibles in the meromorphic
extension of χR(z)χ from C+.
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Threshold eigenvalue in non-selfadjoint case

Assume that zero is an eigenvalue of H. Then −1 is an eigenvalue of
compact operator R0(0)W . Let Π−1 denote the Riesz projection of
eigenvalue −1 of R0(0)W . Set

ω(z) = det(Π−1(1 + R0(z)W )Π−1), z 6∈ σ(H0).

ω(z) is a Gevrey function up to z = 0. Assume that there exist k ∈ N∗
and ωk 6= 0 such that

ω(z) = ωk zk + O(|z|k+1), (8)

for z near 0 and Re z < 0.

If H is selfadjoint, (8) is always satisfied with k the multiplicity of
eigenvalue zero of H.
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Sub-exponential time-decay estimates

Theorem 5

(a). The set of quantum resonances of H in O is at most finite. In
particular, the numbers of complex eigenvalues of H in O and of
outgoing resonances r+(H) of H are at most finite.

(b). If zero is an eigenvalue of H, suppose in addition Condition (8) is
satisfied. Then there exists c > 0 such that for any χ ∈ C∞0 (Rn),

‖χ(e−itH−
∑

λ∈σd (H)∩C+

e−itHΠλ−Π0(t)−
∑

ν∈r+(H)

e−itνPν(t))χ‖ ≤ Cχe−c tβ ,

for t > 0. Here β = 1−µ
1+µ and c > 0 is independent of χ.
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Sub-exponential time-decay estimates

In the above Theorem, Πλ is the Riesz projection associated with the
discrete eigenvalue λ of H, P0(t) is contribution from zero eigenvalue

Π0(t) =
k−1∑
j=0

t j Π0,j ,

with Rank Π0,j ≤ m, m being the algebraic multiplicity of −1 as
eigenvalue of R0(0)W . Pν(t) is polynomial in t with coefficients of
rank ≤ m+(ν).

Non-trivial question. How to check the condition (8) and to calculate
more explicitly contributions from threshold eigenvalue and positive
resonances ?

Xue Ping WANG Gevrey estimates of the resolvent



Introduction
Some known results in two-body problems

Gevrey estimates of the resolvent in N-body problems

Gevrey estimates for the model resolvent
Gevrey-3 estimates for quantum Coulomb Hamiltonian
Quantum resonances and sub-exponential time-decay

Sub-exponential time-decay estimates

Figure: Meromorphic extension of χR(z)χ and the contour Γ used for e−itH .
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Sub-exponential time-decay estimates

The main step in the proof of Theorem 5 is to prove the resolvent
R(z) = (H − z)−1 admits an expansion of the form

R(z) =
k∑

j=1

z−jR−j + r0(z)

with χr0(z)χ ∈ G(1+γ) in {|z| < δ,−δ < arg z < π + δ}.
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Comments on Condition (8)

Assume that zero eigenvalue of H is geometrically simple. Then
If there exists an associated eigenfunction ϕ0 of H such that∫

Rn
(ϕ0(x))2dx = 1, (9)

then Condition (8) is satisfied with k = 1 and one has

Π0(t) = Π0,0 = 〈·, Jϕ0〉ϕ0.

Here J is the complex conjugation J : f (x)→ f (x).

If (9) is not satisfied and if Condition (8) is satisfied for some k ,
then k ≥ 2 and Π0,k−1 is of rank one and is given by

Π0,k−1 = 〈·, Jψ0〉ψ0

for some eigenfunction ψ0 associated with zero eigenvalue of H.
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Threshold spectral analysis

Eigenvalue −1 of R0(0)W is always semisimple if H is selfadjoint. It is
no longer the case if H is non-selfadjoint.

Let p be the algebraic multiplicity of eigenvalue −1 of R0(0)W . The
point of calculation is to show that there exists a nice basis b for the
range of π−1 s.t.

Mb (1 + R0(z)W )

=



0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · · · · 0


+ z



a11 · · · · · · · · · a1p
...

. . .
...

...
. . .

...
...

. . .
...

ap1 · · · · · · · · · app


+ O(z2)

where ap1 is related to (9). Assumption (8) is satisfied with k = 1 iff
ap1 6= 0.
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Comments on Condition (8)

A recent result of Maha Aafarani (PhD student, Nantes) implies that if
zero eigenvalue of H is of multiplicity m and if there exists a basis
{ϕ1, · · · , ϕm} of eigenfunctions such that

det(〈ϕj , Jϕk 〉)1≤j,k≤m 6= 0, (10)

where J is complex conjugaison, then Condition (8) is verified with
k = m and one has Π0,j = 0, j = 1, · · · ,m − 1 and Π0,0 is given by

Π0,0 =
m∑

j=1

〈·, Jψj〉ψj

where {ψj ; j = 1, · · · ,m} is a basis of the eigenspace of H associated
with eigenvalue zero verifying

(ψi , Jψj ) = δij .
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A three-body operator

Consider now N-body problems. To simplify notation, consider only
atomic-type three-body Schrödinger operators

H = −∆x1 −∆x2 + V1(x1) + V2(x2) + V3(x1 − x2), xj ∈ Rn

where Vj (y) is real, relatively compact with respect to −∆y in L2(Rn)
and there exists some constant µ > 0 such that

|∂αy Vj (y)| ≤ Cα|y |−2µ−|α| (11)

for y outside some compact of Rn and for |α| ≤ 2. This is the
Hamiltonian for a quantum system consisting of three particles
numbered by {0,1,2}, where particle 0 is of infinite mass.
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A three-body operator

An example is the Coulomb Hamiltonian

H = −∆x1 −∆x2 +
q1

|x1|
+

q2

|x2|
+

q3

|x1 − x2|
, xj ∈ R3.

If qj > 0 for j = 1,2,3, then H verifies the weighted coercive condition
and Theorem 2 holds. For an atomic-type three-body operator, it is
natural to assume that qj < 0 for j = 1,2 and q3 > 0. We want to
show that the method used before can be modified to establish
Gevrey estimate of the resolvent near the lowest threshold under the
condition that

q3 + max{q1,q2} > 0.
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A three-body operator

Let H be a general atomic type three-body operator with Vj (y)
verifying (11). Let Hj , j = 1,2,3, be subhamiltonians of H
corresponding to two-cluster decomposition:

a1 = {(01)(2)},a2 = {(02)(1)},a3 = {(12)(0)}.

In Jacobi coordinates,

Hj = −∆xj + Vj (xj ), j = 1,2, H3 = −2∆y + V3(y),

where y = x1 − x2.

Xue Ping WANG Gevrey estimates of the resolvent



Introduction
Some known results in two-body problems

Gevrey estimates of the resolvent in N-body problems

Atomic-type three-body operators
Gevrey estimates of the resolvent near the lowest threshold
Ideas of proof

A three-body operator

One has
e0 = infσess(H) = min

j=1,2,3
infσ(Hj ).

Assume that e0 is a unique two-cluster threshold of H, say

e0 = infσ(H1) < 0, infσ(Hj ) > e0, j = 2,3. (12)

Let ϕ0(x1) be a normalized eigenfunction of H1 = −∆x1 + V1(x1)
associated with e0 and

I(x2) = 〈I1ϕ0, ϕ0〉L2(Rn
x1

)

where I1(x1, x2) = V2(x2) + V3(x1 − x2).
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Results

Theorem 6

Denote x = x2 ∈ Rn. Assume that e0 is a unique two-cluster
threshold and there exist some constants c > 0 and µ ∈]0,1[

I(x) ≥ c
|x |2µ

(13)

for |x | >> 1. Then H has at most a finite number of eigenvalues in
]−∞,e0[ and

R(z) = − Πe0

z − e0
+ R1(z) (14)

where e−a〈x〉1−µ

R1(z) ∈ G( 1+µ
1−µ )(Ω).
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Results

Here Ω = {z ∈ C; |z − e0| < δ, |arg(z − e0)| > δ > 0}. If e0 is an
eigenvalue of H, Πe0 is the associated eigenprojection; otherwise
Πe0 = 0. In atomic-type three-body Coulomb problem, one has

I(x) =
q2 + q3

|x |
+ O(|x |−2), |x | >> 1.

Therefore all conditions of Theorem 6 are satisfied with µ = 1
2 if

q1 < q2 < 0 and q3 + q2 > 0.

Remark The case q1 = q2 < 0 and q3 + q2 > 0 can also be treated
by the method of E.Skibsted-W. for spectral analysis near arbitrary
two-cluster thresholds. In this case, E−+(z) is a 3× 3 matrix-valued
operator.
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Results

From Theorem 6, we obtain large-time expansion for solutions to the
associated heat equation.

Corollary 7

Under the conditions of Theorem 6, for any a > 0, there exist some
constants C, c > 0 such that

‖e−a〈x〉1−µ

(e−tH −
∑

λ∈σd (H)

e−tλΠλ + e−te0 Πe0 )u‖ ≤ Ce−te0−ctβ‖u‖

for any u ∈ L2(R2n).
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A reduction by Grushin method

The main task for the proof of Theorem 6 is to show Theorem 2 still
holds when the model resolvent (H0 − λ)−1 is replaced by
(H0 + W∞(λ)− λ)−1 where W∞(λ) is a non-local operator arising
from Grushin reduction.

Let ϕ0 be a normalized eigenfunction of H1 associated with e0 and
F = {ϕ0(x1)f (x2); f ∈ L2(Rn)}. Denote Π : L2(R2n)→ F the
orthogonal projection and Π′ = 1− Π. Let H ′ = Π′HΠ′. Then

infσess(H ′) > e0,

(see W., 2004). There are two cases:

(a). e0 6∈ σd (H ′); (b). e0 ∈ σd (H ′).
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A reduction by Grushin method

Consider the simpler case e0 6∈ σd (H ′). Then R′(z) = (H ′ − z)−1Π′ is
holomorphic for z near e0. By Grushin method, one can establish a
representation formula for R(z) = (H − z)−1:

R(z) = E(z)− E+(z)E−+(z)−1E−(z) (15)

where

E(z) = R′(z),

E+(z) = −R′(z)I1(ϕ0 ⊗ ·) + (ϕ0 ⊗ ·),
E−(z) = (·, ϕ0)1 − (ϕ0, I1R′(z)·)1,

E−+(z) = (z − e0)− (−4x2 + I(x2)) + (I1R′(z)I1(ϕ0 ⊗ ·), ϕ0)1.

where I1 = V2(x2) + V3(x1 − x2), I(x2) = (I1ϕ0, ϕ0)1 and (·, ·)1 denotes
scalar product in x1 variables.
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A reduction by Grushin method

E(z) and E±(z) are holomorphic for z near e0. We need to study
E−+(z)−1. Set λ = z − e0 and x = x2. Write E−+(z) as

E−+(e0 + λ) = λ− (−∆x + V (λ)),

where V (λ) = I(x) + W (λ) with

W (λ) = (ϕ0, I1R′(λ+ e0)I1(ϕ0 ⊗ ·))1. (16)

W (λ) is holomorphic for λ near 0 and

‖〈x〉1+2µW (λ)〈x〉1+2µ‖ ≤ C

uniformly in λ near 0, because ΠI1Π′ = O(〈x〉−1−2µ).
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Gevrey estimates for E−+(λ+ e0)
−1

To simplify presentation, assume that e0 is not an eigenvalue of H.
Then 0 is not an eigenvalue of E−+(e0). We want to prove Gevrey
estimates for E−+(e0 + λ)−1. If the term W (λ) were absent, under the
condition (13) we can split −∆ + I(x) as

−∆ + I(x) = H0 + U(x)

where H0 verifies condition of Theorem 2 and U(x) is of compact
support. Gevrey estimates for (−∆ + I − λ)−1 follows from Theorem 2
and the equation

(−∆ + I − λ)−1 = R0(λ)(1 + UR0(λ))−1,

if zero is not eigenvalue of −∆ + I. This argument can not be applied
to E−+(λ+ e0)−1, because W (λ) is non-local and has no sufficient
decay.
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Gevrey estimates for E−+(λ+ e0)
−1

To treat the term W (λ), we modify the proof of Theorem 2 from the
very beginning and exploit the analyticity of W (λ) in λ. Let ϕs be the
weight function used in Lemma 1: ϕs(x) = (1 + |x|2

R2
s

)s/2 where

Rs = M〈s〉
1

1−µ .

Lemma 8

For r , r ′ ∈ R with r + r ′ ≤ 2 + 4µ, one has

‖〈x〉rϕsW (λ)ϕ−s〈x〉r
′
‖ ≤ C

uniformly in s ∈ R and |λ| < δ.
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Gevrey estimates for E−+(λ+ e0)
−1

Proof. Lemma 8 follows from

ϕsH ′ϕ−s = H ′ + O(
s

M〈s〉
1

1−µ

) = H ′ + O(
1
M

)

uniformly in s and from the fact e0 belongs to the resolvent set of H ′.
�

Let χR(x) = χ1( x
R ), R ≥ 1, where χ1 ∈ C∞(Rn) such that χ1(x) = 0 if

|x | ≤ 1 and χ1(x) = 1 if |x | ≥ 2. Set

F (λ) = −∆x + 1− χR(x) + χRV (λ). (17)

F (λ) = H0 + χRW (λ) with H0 = −∆ + 1− χR(x) + χR I(x) verifying
conditions of Lemma 1.
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Gevrey estimates for E−+(λ+ e0)
−1

Lemma 9

Assume (13) for some µ ∈]0,1[. There exist some constants
M,R > 0 such that

‖〈x〉−µϕsu‖+ ‖∇(ϕsu)‖ ≤ C‖〈x〉µϕs(F (λ)− λ)u‖

uniformly in s ∈ R, λ ∈]− δ, 0] and u ∈ S.

Lemma 9 follows from Lemma 1 applied to H0 and Lemma 8. In the
following, R > 1 is fixed such that Lemma 9 holds.
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Gevrey estimates for E−+(λ+ e0)
−1

Lemma 9 shows that G(λ) = (F (λ)− λ)−1 verifies

‖〈x〉−µϕsG(λ)ϕ−s〈x〉−µ‖+ ‖∇ϕsG(λ)ϕ−s〈x〉−µ‖ ≤ C

uniformly in λ ∈]− δ, 0] and s ∈ R. By method of commutator, we
obtain

‖〈x〉−2µϕsG(λ)ϕ−s‖ ≤ C (18)

uniformly in s and λ.
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Gevrey estimates for E−+(λ+ e0)
−1

A heavy task in the proof of Theorem 6 is to show the following

Theorem 10

There exist C, δ > 0 such that for any r ≥ 0, N ∈ N and λ ∈]− δ, 0],
one has

‖〈x〉−2µ〈xN,r 〉−(2N+r)µG(N)(λ)〈xN,r 〉rµ‖

≤ CN+1N!〈(2N + r)µ〉γN (19)

Here
xN,r =

x
RN,r

with RN,r = M〈(2N + r)µ〉
1

1−µ

and 〈xN,r 〉 = (1 + |xN,r |2)
1
2 .
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Proof of Theorem 10

Proof. The case N = 0 and r ≥ 0 of Theorem 10 follows from (18)
with s = rµ. In the general case N ≥ 0 and r ≥ 0, using

G(N+1)(λ) = (G(λ)2 −G(λ)χRW ′(λ)G(λ))(N),

we prove by induction

‖〈x〉−2µ〈xN,r 〉−(2N+r)µG(N)(λ)〈xN,r 〉rµ‖

≤ CN+1
N N!〈(2N + r)µ〉γN

with CN ≤ CN+1 ≤ CN(1 + c
N1+γ ). �
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Proof of Theorem 6

Note
‖〈xN,r 〉(2N+r)µe−a〈x〉1−µ

‖L∞ ≤ AN+r
a .

Theorem 10 gives

‖〈x〉−τe−a〈x〉1−µ

G(N)(λ)〈x〉τ‖ ≤ CN+1+τ
a N!〈N + τ〉γN+ τ

1−µ

for τ ≥ 0 and N ∈ N. Theorem 6 in the case e0 6∈ σp(H) ∪ σd (H ′) is
deduced from the above estimate and

R(z) = E(z)− E+(z)E−+(z)−1E−(z)

E−+(λ+ e0)−1 = −G(λ)(1 + U(λ)G(λ))−1,

where U(λ) = (1− χR)(V (λ)− 1). Note that U(λ)ea〈x〉1−µ

is bounded
if a > 0 is small. �
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Happy birthday André !
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