Abstract

ROULEUX, Michel ¹ (Toulon)

"Semi-classical Green functions"

a joint work with A. Anikin², S. Dobrokhotov² and V. Nazaikinskii²

Let $H(x,p) \sim H_0(x,p) + hH_1(x,p) + \cdots$ be a semi-classical Hamiltonian on $T^*\mathbf{R}^n$, and $\Sigma_E = \{H_0(x,p) = E\}$ a non critical energy surface. Consider f_h a semi-classical distribution (the "source") microlocalized on a Lagrangian manifold Λ which intersects cleanly the flow-out Λ_+ of the Hamilton vector field X_{H_0} in Σ_E . Using Maslov canonical operator, we look for a semi-classical distribution u_h satisfying the limiting absorption principle and $H^w(x, hD_x)u_h = f_h$ (semi-classical Green function). We focus on the case where the Hamiltonian is of Helmholtz type $H(x,p) = |p|^m \frac{1}{\rho(x)}$, m = 1, 2 and the source is either microlocalized on the conormal of a hypersurface of \mathbf{R}^n , or has the form of a "Bessel beam", i.e. Λ is the "cylinder" $\Lambda = \{x = X(\varphi, \psi) = \varphi \omega(\psi), p = P(\varphi, \psi) = \omega(\psi), \varphi \in \mathbf{R}, \omega \in \mathbf{S}^{n-1}\}$, when n = 2, 3.

¹Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille

²Ishlinski Institute for Problems of Mechanics, and Moscow Institute of Physics and Technology, Moscow, Russia